COMPLEX NUMBERS & MATRICES (Q 3, PAPER 1)

1999

3 (a) If
$$A = \begin{pmatrix} 2 & 1 \\ 5 & 4 \end{pmatrix}$$
, find A^{-1} .

- 3 (b) (i) Find a quadratic equation whose roots are 3 + i and 3 i, where $i^2 = -1$.
 - (ii) Let $P(z) = z^3 kz^2 + 22z 20$, $k \in \mathbf{R}$.

3 + i is a root of the equation P(z) = 0.

Find the value of k.

Find the other two roots of the equation P(z) = 0.

3 (c) (i) Solve for *w*

$$\sqrt{5}|w|+iw=3+i.$$

Write your answers in the form u + iv, u, $v \in \mathbf{R}$.

(ii) Use De Moivre's theorem to find three roots of the equation $z^6 - 1 = 0$.

ANSWERS

3 (a)
$$\begin{pmatrix} \frac{4}{3} & -\frac{1}{3} \\ -\frac{5}{3} & \frac{2}{3} \end{pmatrix}$$

(b) (i)
$$z^2 - 6z + 10 = 0$$

(ii)
$$k = 5$$
; $3 - i$, 2

(c) (i)
$$1+2i$$
, $1-\frac{1}{2}i$

(ii)
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
, $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$, -1 , $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$, $\frac{1}{2} - \frac{\sqrt{3}}{2}i$, 1