Circle (Q 1, Paper 2)

Lesson No. 5: Chords

2002

1 (c) The circle C has equation $x^{2}+y^{2}-4 x+6 y-12=0 . L$ intersects C at the points p and $q . M$ intersects C at the points t and $s .|p q|=|t s|=8$.
(i) Find the radius of C and hence show that the distance from the centre of C to each of the lines L and M is 3 .

(ii) Given that L and M intersect at the point (-4, 0), find the equations of L and M.

Solution

1 (c) (i)
Circle C centre $(-g,-f)$, radius r.

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

$$
\begin{equation*}
r=\sqrt{g^{2}+f^{2}-c} \tag{4}
\end{equation*}
$$

Some properties of chords

1. The line K intersects the circle at points u and v.
2. $[u v]$ is a chord.
3. The mid-point of the chord $[u v]$ is w.
4. The line from the centre of the circle to w is perpendicular to the chord.
5. You can apply Pythagoras by completing a right-angled triangle.
6. The perpendicular distance of p to K is the distance l. Obviously, $l<r$.

Circle C: $x^{2}+y^{2}-4 x+6 y-12=0$
Centre (2, -3), $r=\sqrt{4+9+12}=5$
Apply Pythagoras to the right-angled triangles to show the distance l is 3 .
$\therefore 4^{2}+l^{2}=5^{2} \Rightarrow l^{2}=25-16=9 \Rightarrow l=3$

1 (c) (ii)

Equations of L and M : Point ($-4,0$), Slope $=+\frac{m}{1}$
$\Rightarrow m x-y+k=0$
$\Rightarrow m(-4)-(0)+k=0 \Rightarrow k=4 m$
$\Rightarrow m x-y+4 m=0$
You know that the perpendicular distance from the centre to L and M is 3 .

$$
\begin{equation*}
d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \tag{8}
\end{equation*}
$$

$3=\frac{|m(2)-(-3)+4 m|}{\sqrt{m^{2}+1}} \Rightarrow 3 \sqrt{m^{2}+1}=|6 m+3| \Rightarrow \sqrt{m^{2}+1}=|2 m+1|$
$\Rightarrow m^{2}+1=4 m^{2}+4 m+1 \Rightarrow 3 m^{2}+4 m=0$
$\Rightarrow m(3 m+4)=0 \Rightarrow m=0,-\frac{4}{3}$
Substitute these values of m into equation 1 to give the two equations L and M.

$$
\begin{aligned}
& m=0 \Rightarrow y=0 \\
& m=-\frac{4}{3} \Rightarrow-\frac{4}{3} x-y+4\left(-\frac{4}{3}\right)=0 \Rightarrow 4 x+3 y+16=0
\end{aligned}
$$

