CIRCLE (Q 1, PAPER 2)

2011

1. (a) The following parametric equations define a circle:

 $x = 2 + 3\sin\theta$, $y = 3\cos\theta$ where $\theta \in \mathbb{R}$.

What is the Cartesian equation of the circle?

- (b) Find the equation of the circle that passes through the points (0, 3), (2, 1) and (6, 5).
- (c) The circle c_1 : $x^2 + y^2 8x + 2y 23 = 0$ has centre A and radius r_1 . The circle c_2 : $x^2 + y^2 + 6x + 4y + 3 = 0$ has centre B and radius r_2 .
 - (i) Show that c_1 and c_2 intersect at two points.
 - (ii) Show that the tangents to c_1 at these points of intersection pass through the centre of c_2 .

SOLUTION

1 (a)

$$x = 2 + 3\sin\theta \Rightarrow (x - 2) = 3\sin\theta$$
$$y = 3\cos\theta$$

$$\therefore (x-2)^2 + y^2 = 9\sin^2\theta + 9\cos^2\theta$$
$$(x-2)^2 + y^2 = 9(\sin^2\theta + \cos^2\theta)$$
$$(x-2)^2 + y^2 = 9$$

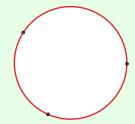
STEPS

- **1**. Isolate the trig functions.
- 2. Square both sides.
- **3**. Add.
- **4**. Put $\cos^2 t + \sin^2 t = 1$.

1(b)

STEPS

- 1. Substitute in each point into the equation of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ in turn and tidy up.
- **2**. Solve them simultaneously by eliminating *c* from two pairs of equations.



$$(0, 3) \in c \Rightarrow (0)^{2} + (3)^{2} + 2g(0) + 2f(3) + c = 0$$
$$0 + 9 + 0 + 6f + c = 0$$
$$6f + c = -9....(1)$$

$$(2, 1) \in c \Rightarrow (2)^{2} + (1)^{2} + 2g(2) + 2f(1) + c = 0$$

$$4 + 1 + 4g + 2f + c = 0$$

$$4g + 2f + c = -5....(2)$$

$$(6,5) \in c \Rightarrow (6)^{2} + (5)^{2} + 2g(6) + 2f(5) + c = 0$$
$$36 + 25 + 12g + 10f + c = 0$$
$$12g + 10f + c = -61....(3)$$

Subtract equations (3) and (2) to eliminate c:

$$12g + 10f + c = -61....(3)$$

$$4g + 2f + c = -5....(2)$$

$$\frac{4g + 2f + c = -5.....(2)}{8g + 8f = -56 \Rightarrow g + f = -7.....(4)}$$

Subtract equations (1) and (2) to eliminate c:

$$6f + c = -9.....(1)$$

$$4g + 2f + c = -5....(2)$$

$$\frac{4g + 2f + c = -5.....(2)}{-4g + 4f = -4 \Rightarrow -g + f = -1...(5)}$$

Add equations (4) and (5) to calculate f:

$$g + f = -7...(4)$$

$$\frac{-g + f = -1...(5)}{2f = -8 \Rightarrow f = -4}$$

$$2f = -8 \Rightarrow f = -4$$

Substitute this value of finto Eqn (4): f = -4: $g + (-4) = -7 \Rightarrow g = -3$

Substitute this value of f into Eqn (1): f = -4:6(-4)+c=-9

$$-24+c=-9$$

$$\therefore c = 15$$

Replace g, f and c by their values in the general equation of the circle:

$$c: x^2 + y^2 + 2gx + 2fy + c = 0$$

$$x^{2} + y^{2} + 2(-3)x + 2(-4)y + 15 = 0$$

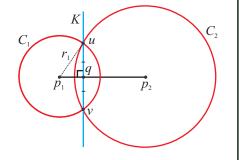
$$x^2 + y^2 - 6x - 8y + 15 = 0$$

1(c)(i)

Find the common chord between the circles by subtracting their equations.

SOME POINTS TO NOTE:

- 1. The line between the centres is perpendicular to the common chord Kand bisects [uv].
- **2**. $\{u, v\} = K \cap C_1$



$$c_1: x^2 + y^2 - 8x + 2y - 23 = 0$$

$$c_2$$
: $x^2 + y^2 + 6x + 4y + 3 = 0$

$$c_2: \frac{x^2 + y^2 + 6x + 4y + 3 = 0}{-14x - 2y - 26 = 0} \Rightarrow 7x + y + 13 = 0 \text{ [Equation of the common chord]}$$

$$\therefore v = (-7x - 13)$$

Substitute this value of y back into the equation of c_2 :

$$x^{2} + (-7x - 13)^{2} + 6x + 4(-7x - 13) + 3 = 0$$
$$x^{2} + 49x^{2} + 182x + 169 + 6x - 28x - 52 + 3 = 0$$

$$50x^2 + 160x + 120 = 0$$

$$5x^2 + 16x + 12 = 0$$

$$(5x+6)(x+2) = 0$$

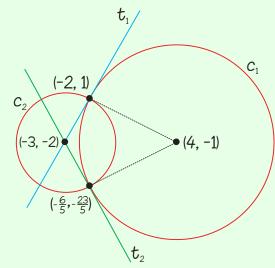
$$\therefore x = -\frac{6}{5}, -2$$

$$x = -\frac{6}{5}: y = -7(-\frac{6}{5}) - 13 = \frac{42}{5} - 13 = -\frac{23}{5}$$
$$x = -2: y = -7(-2) - 13 = 14 - 13 = 1$$

Points of intersection: $\left(-\frac{6}{5}, -\frac{23}{5}\right)$, $\left(-2, 1\right)$

1 (c) (ii)

Call t_1 and t_2 , the tangents to c_1 at these points of intersection.



$$c_1$$
: $x^2 + y^2 - 8x + 2y - 23 = 0$

Centre:
$$(-g, -f) = (4, -1)$$

$$c_2$$
: $x^2 + y^2 + 6x + 4y + 3 = 0$

Centre:
$$(-g, -f) = (-3, -2)$$

EQUATION OF TANGENT t_1

Find the slope between the point of contact (-2, 1) and the centre of $c_1(4, -1)$.

$$m_1 = \frac{1 - (-1)}{-2 - 4} = \frac{2}{-6} = -\frac{1}{3}$$

Slope of t_1 is perpendicular to this slope: $m_1^{\perp} = 3$

Equation of
$$t_1$$
: $t_1: 3x - y + k = 0$

$$(-2, 1) \in t_1 \Rightarrow 3(-2) - (1) + k = 0$$

 $-6 - 1 + k = 0$

$$\therefore k = 7$$

$$t_1: 3x - y + 7 = 0$$

Is
$$(-3, -2)$$
 on t_1 ? $3(-3) - (-2) + 7$

$$=-9+2+7$$

= 0 [Therefore, tangent t_1 passes through the centre of c_2 .]

EQUATION OF TANGENT t_2

Find the slope between the point of contact $\left(-\frac{6}{5}, -\frac{23}{5}\right)$ and the centre of $c_1(4, -1)$.

$$m_2 = \frac{-\frac{23}{5} - (-1)}{-\frac{6}{5} - 4} = \frac{-\frac{23}{5} + 1}{-\frac{6}{5} - 4} = \frac{-\frac{18}{5}}{-\frac{26}{5}} = \frac{18}{26} = \frac{9}{13}$$

Slope of t_2 is perpendicular to this slope: $m_2^{\perp} = -\frac{13}{9}$

Equation of
$$t_2$$
: $t_2: 13x + 9y + k = 0$

$$(-\frac{6}{5}, -\frac{23}{5}) \in t_2 \Rightarrow 13(-\frac{6}{5}) + 9(-\frac{23}{5}) + k = 0$$

$$-\frac{78}{5} - \frac{207}{5} + k = 0$$

$$-\frac{285}{5} + k = 0$$

$$-57 + k = 0$$

$$\therefore k = 57$$

$$t_2: 13x + 9y + 57 = 0$$

Is
$$(-3, -2)$$
 on t_2 ? $13(-3) + 9(-2) + 57$
= $-39 - 18 + 57$
= 0 [Therefore, tangent t_2 passes through the centre of c_2 .]

ALTERNATIVE SOLUTION:

1(c)(i)

$$c_1$$
: $x^2 + y^2 - 8x + 2y - 23 = 0$: $A(4, -1)$, $r_1 = \sqrt{4^2 + (-1)^2 - (-23)} = \sqrt{40} = 2\sqrt{10}$
 c_2 : $x^2 + y^2 + 6x + 4y + 3 = 0$: $B(-3, -2)$, $r_2 = \sqrt{(-3)^2 + (-2)^2 - 3} = \sqrt{10}$

The circles intersect at two points if the distance between their centres is less than the sum of the radii: $|AB| < r_1 + r_2$.

$$|AB| = \sqrt{(4+3)^2 + (-1+2)^2} = \sqrt{49+1} = \sqrt{50}$$

 $r_1 + r_2 = 2\sqrt{10} + \sqrt{10} = 3\sqrt{10}$
 $\therefore |AB| < r_1 + r_2 \Rightarrow \text{ circles intersect at two points.}$

1 (c) (ii)

You need to show that the tangent t_1 to the circle c_1 at the point of intersection P passes through the centre of c_2 .

 \tilde{AP} is perpendicular to t_1 and so if the above statement is true then triangle ABP is a right-angled triangle.

$$(\sqrt{10})^2 + (\sqrt{40})^2 = (\sqrt{50})^2$$
?
10+40=50 (True)

The same applies to the other point of intersection Q.

