1996

1 (a) The parametric equations of a circle are

$$x = 5 + \frac{\sqrt{3}}{2}\cos\theta$$
, $y = -3 + \frac{\sqrt{3}}{2}\sin\theta$.

Find its Cartesian equation.

(b) Points (1, -1), (-6, -2) and (3, -5) are on a circle C. Find the equation of C.

(c)
$$S_1$$
: $x^2 + y^2 - 6x - 4y + 12 = 0$

 S_2 : $x^2 + y^2 + 10x + 4y + 20 = 0$ are two circles.

- (i) Find the coordinates of their centres p and q and the lengths of their radii r_1 , r_2 respectively.
- (ii) Verify that the lines

L:
$$y-1=0$$
 and M: $4x-3y-1=0$

are tangents to S_1 .

(iii) If w is the point of intersection of L and M and $w \in [pq]$, show that

$$|pw|:|wq|=r_1:r_2.$$

SOLUTION

1 (a)

STEPS

- 1. Isolate the trig functions.
- 2. Square both sides.
- **3**. Add.
- **4.** Put $\cos^2 t + \sin^2 t = 1$.
- 1. $x = 5 + \frac{\sqrt{3}}{2}\cos\theta \Rightarrow (x 5) = \frac{\sqrt{3}}{2}\cos\theta$

$$y = -3 + \frac{\sqrt{3}}{2}\sin\theta \Rightarrow (y+3) = \frac{\sqrt{3}}{2}\sin\theta$$

2.
$$(x-5)^2 = \frac{3}{4}\cos^2\theta$$

$$(y+3)^3 = \frac{3}{4}\sin^2\theta$$

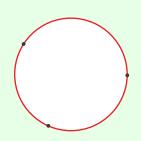
3. $(x-5)^2 + (y+3)^2 = \frac{3}{4}(\cos^2\theta + \sin^2\theta)$

$$\Rightarrow (x-5)^2 + (y+3)^2 = \frac{3}{4}$$

4. $\therefore 4(x-5)^2 + 4(y+3)^2 = 3$

STEPS

- 1. Substitute in each point into the equation of the circle $x^{2} + y^{2} + 2gx + 2fy + c = 0$ in turn and tidy up.
- **2**. Solve them simultaneously by eliminating c from two pairs of equations.



$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 3

1.
$$(1, -1) ∈ C ⇒ (1)^2 + (-1)^2 + 2g(1) + 2f(-1) + c = 0$$

⇒ $1 + 1 + 2g - 2f + c = 0$
∴ $2g - 2f + c = -2$(1)

$$(-6, -2) ∈ C ⇒ (-6)2 + (-2)2 + 2g(-6) + 2f(-2) + c = 0$$

⇒ 36 + 4 - 12g - 4f + c = 0
∴ -12g - 4f + c = -40....(2)

$$(3, -5) \in C \Rightarrow (3)^2 + (-5)^2 + 2g(3) + 2f(-5) + c = 0$$

 $\Rightarrow 9 + 25 + 6g - 10f + c = 0$
 $\therefore 6g - 10f + c = -34.....(3)$

2.
$$2g - 2f + c = -2......(1)$$

$$-12g - 4f + c = -40.....(2)$$

$$14g + 2f = 38 \Rightarrow 7g + f = 19...(4)$$

$$7g + f = 19....(4)(\times 2)$$

$$g - 2f = -8...(5)$$

$$14g + 2f = 38$$

$$g - 3f = -8$$

$$15g = 30 \Rightarrow g = 2$$

Substitute this value of g into Eqn. (4).

$$\therefore 7(2) + f = 19 \Longrightarrow 14 + f = 19$$

$$\therefore f = 5$$

Substitute these values of g and f into Eqn. (1):

$$\therefore 2(2) - 2(5) + c = -2 \Rightarrow 4 - 10 + c = -2$$

$$\therefore c = 4$$

Equation of C: $x^2 + y^2 + 4x + 10y + 4 = 0$

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 3

$$r = \sqrt{g^2 + f^2 - c} \qquad \dots \qquad 4$$

$$S_1: x^2 + y^2 - 6x - 4y + 12 = 0$$

$$p(3, 2), r_1 = \sqrt{9 + 4 - 12} = \sqrt{1} = 1$$

$$S_2: x^2 + y^2 + 10x + 4y + 20$$

$$p(3, 2), r_1 = \sqrt{9 + 4 - 12} = \sqrt{1} = 1$$

$$S_2 : x^2 + y^2 + 10x + 4y + 20$$

$$q(-5, -2), r_2 = \sqrt{25 + 4 - 20} = \sqrt{9} = 3$$

1 (c) (ii)

Some information about Tangents:

- 1. A tangent T intersects a circle C at one point only, the point of contact p.
- 2. The perpendicular distance from the centre of the circle C to the tangent T equals the radius r.

You can use either of the above points to show the lines are tangent. I'll do one for each line.

$$L: y-1=0 \Rightarrow y=1$$

$$\therefore S_1 : x^2 + (1)^2 - 6x - 4(1) + 12 = 0$$

$$\Rightarrow x^2 + 1 - 6x - 4 + 12 = 0$$

$$\Rightarrow x^2 - 6x + 9 = 0$$

$$\Rightarrow (x-3)(x-3) = 0$$

$$\therefore x = 3$$

As there is only one solution, L is a tangent to S_1 .

$$M: 4x-3y-1=0, (x_1, y_1)=(3, 2)$$

$$\therefore d = \frac{|4(3) - 3(2) - 1|}{\sqrt{4^2 + (-3)^2}} = \frac{|5|}{\sqrt{16 + 9}} = \frac{5}{\sqrt{25}} = \frac{5}{5} = 1$$

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \dots 8$$

The perpendicular distance from the centre of S_1 to M is equal to its radius. Therefore, M is a tangent to S_1 .

1 (c) (iii)

Solve *L* and *M* simultaneously.

$$L: y = 1$$

$$M: 4x-3y-1=0 \Rightarrow 4x-3(1)-1=0$$

$$\Rightarrow 4x = 4 \Rightarrow x = 1$$

 \therefore w(1, 1) is the point of intersection.

$$|pw| = \sqrt{(3-1)^2 + (2-1)^2} = \sqrt{4+1} = \sqrt{5}$$

$$|qw| = \sqrt{(-5-1)^2 + (-2-1)^2} = \sqrt{36+9} = \sqrt{45} = 3\sqrt{5}$$

$$\therefore |pw| : |qw| = \sqrt{5} : 3\sqrt{5} = 1 : 3 = r_1 : r_2$$

$$|pw|:|qw|=\sqrt{5}:3\sqrt{5}=1:3=r_1:r_2$$