Circle (Q 1, Paper 2)

Lesson No. 1: The Three Circle Equations

2006

1 (a) $a(-1,-3)$ and $b(3,1)$ are the end-points of a diameter of a circle. Write down the equation of a circle.

Solution

1 (a)

The centre o is the mid-point of [ab].
Mid-point $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-1+3}{2}, \frac{-3+1}{2}\right)=(1,-1)$
The radius of the circle is half the distance $|a b|$.
$r=\frac{1}{2} \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\frac{1}{2} \sqrt{(3+1)^{2}+(1+3)^{2}}=\frac{1}{2} \sqrt{32}=2 \sqrt{2}$
Circle C with centre (h, k), radius r.

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{2}
\end{equation*}
$$

$C:(x-1)^{2}+(y+1)^{2}=(2 \sqrt{2})^{2} \Rightarrow(x-1)^{2}+(y+1)^{2}=8$. This answer is fine. However, if you decide to expand the equation you will get: $x^{2}+y^{2}-2 x+2 y-6=0$

2004

1 (a) A circle has centre $(-1,5)$ and passes through the point $(1,2)$. Find the equation of the circle.

Solution

1 (a)

$$
\text { Circle } C \text { with centre }(h, k) \text {, radius } r \text {. }
$$

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{2}
\end{equation*}
$$

Centre $(-1,5), r=\sqrt{(-1-1)^{2}+(5-2)^{2}}=\sqrt{4+9}=\sqrt{13}$
Circle: $(x+1)^{2}+(y-5)^{2}=13$

Multiplying this equation also gives $x^{2}+y^{2}+2 x-10 y+13=0=13$

2002

1 (b) The points $a(-2,4), b(0,-10)$ and $c(6,-2)$ are the vertices of a triangle.
(i) Verify the the triangle is right-angled at c.
(ii) Hence, or otherwise, find the equation of the circle that passes through the points a, b and c.

Solution

1 (b) (i)
To show $a c \perp b c$

$$
\begin{equation*}
m=\tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{2}
\end{equation*}
$$

Slope of $a c: m_{1}=\frac{4+2}{-2-6}=\frac{6}{-8}=-\frac{3}{4}$

Slope of $b c: m_{2}=\frac{-10+2}{0-6}=\frac{-8}{-6}=\frac{4}{3}$

Two lines are perpendicular if the product of their slopes is -1 .

$$
K \perp L \Leftrightarrow m_{1} \times m_{2}=-1 .
$$

$m_{1} \times m_{2}=\left(-\frac{3}{4}\right)\left(\frac{4}{3}\right)=-1 \Rightarrow a c \perp b c$

1 (b) (ii)

The best way to do this question is to find the centre and radius of the circle from the points given. This is easily done if you remember a theorem from your Junior Cert, i.e. the angle standing on the diameter of a circle is a right-angle. As $\angle a c b$ is a right angle, it follows that [ab] is the diameter of the circle.
Therefore, the centre is the midpoint of [ab].
Centre: $\left(\frac{-2+0}{2}, \frac{4-10}{2}\right)=(-1,-3)$
The radius is the distance from the centre to any point, say a.
$r=\sqrt{(-2+1)^{2}+(4+3)^{2}}=\sqrt{1+49}=\sqrt{50}$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
1

Equation of circle: Centre ($-1,-3$), $r=\sqrt{50}$
$(x+1)^{2}+(y+3)^{2}=50$
Circle C with centre (h, k), radius r.

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{2}
\end{equation*}
$$

This answer is fine. If you multiply this equation out you get: $x^{2}+y^{2}+2 x+6 y-40=0$

2001

1 (a) A circle with centre $(-3,7)$ passes through the point $(5,-8)$. Find the equation of the circle.

Solution
1 (a)
Circle C with centre (h, k), radius r.

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \quad \ldots \ldots .2
$$

$r=\sqrt{(-3-5)^{2}+(7+8)^{2}}=\sqrt{64+225}=\sqrt{289}$

Equation of circle: $(x+3)^{2}+(y-7)^{2}=289$
This answer is fine, but you can multiply it out to get: $x^{2}+y^{2}+6 x-14 y-231=0$

