Circle (Q 1, Paper 2)

2007

1 (a) The following parametric equations define a circle: $x=5+7 \cos \theta, y=7 \sin \theta$, where $\theta \in \mathbf{R}$.
What is the Cartesian equation of the circle?
(b) $x^{2}+y^{2}-4 x-6 y+5=0$ and $x^{2}+y^{2}-6 x-8 y+23=0$ are two circles.
(i) Prove that the circles touch internally.
(ii) Find the coordinates of the point of contact of the two circles.

(c) A circle has its centre in the first quadrant.

The x-axis is a tangent to the circle at the point $(3,0)$. The circle cuts the y-axis at points that are 8 units apart. Find the equation of the circle.

1 (a)
$x=5+7 \cos \theta \Rightarrow x-5=7 \cos \theta \Rightarrow(x-5)^{2}=49 \cos ^{2} \theta$
$y=7 \sin \theta \Rightarrow y^{2}=49 \sin ^{2} \theta$
$\therefore(x-5)^{2}+y^{2}=49\left(\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\therefore(x-5)^{2}+y^{2}=49$

[^0]
1 (b)

$C_{1}: x^{2}+y^{2}-4 x-6 y+5=0$
Centre $p_{1}(2,3), r_{1}=\sqrt{4+9-5}=\sqrt{8}=2 \sqrt{2}$
$C_{2}: x^{2}+y^{2}-6 x-8 y+23=0$
Centre $p_{2}(3,4), r_{2}=\sqrt{9+16-23}=\sqrt{2}$

1 (b) (i)

Internal Touch $\left|p_{1} p_{2}\right|=r_{1}-r_{2}$
$\left|p_{1} p_{2}\right|=\sqrt{(2-3)^{2}+(3-4)^{2}}=\sqrt{2}$
$r_{1}-r_{2}=2 \sqrt{2}-\sqrt{2}=\sqrt{2}$
Therefore, the circles touch internally.

Circle C with centre ($-g,-f$), radius r.

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

$$
r=\sqrt{g^{2}+f^{2}-c}
$$

(4)

1 (b) (ii)

As can be seen from the diagram, the centre of C_{1} lies on C_{2} because its radius is twice that of C_{2}. The point $(3,4)$ is the mid-point of $(2,3)$ and the point of contact.
$(2,3) \rightarrow(3,4) \rightarrow(4,5)$
$(4,5)$ is the point of contact between the two circles.

1 (c)

Some properties of chords

1. The line K intersects the circle at points u and v.
2. $[u v]$ is a chord.
3. The mid-point of the chord $[u v]$ is w.
4. The line from the centre of the circle to w is perpendicular to the chord.
5. You can apply Pythagoras by completing a right-angled triangle.
6. The perpendicular distance of p to K is the distance l. Obviously, $l<r$.

Centre (3, 5), $r=5$
Circle C with centre (h, k), radius r.

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2}, \ldots \ldots \tag{2}
\end{equation*}
$$

Eqn. of circle: $(x-3)^{2}+(y-5)^{2}=25$

[^0]: Steps

 1. Isolate the trig functions.
 2. Square both sides.
 3. Add.
 4. Put $\cos ^{2} t+\sin ^{2} t=1$.
