2007

1 (b) $C_1: x^2 + y^2 - 4x - 6y + 5 = 0$ Centre $p_1(2, 3), r_1 = \sqrt{4 + 9 - 5} = \sqrt{8} = 2\sqrt{2}$ $C_2: x^2 + y^2 - 6x - 8y + 23 = 0$ Centre $p_2(3, 4), r_2 = \sqrt{9 + 16 - 23} = \sqrt{2}$ 1 (b) (i) INTERNAL TOUCH $|p_1p_2| = r_1 - r_2$

 $|p_1p_2| = \sqrt{(2-3)^2 + (3-4)^2} = \sqrt{2}$ $r_1 - r_2 = 2\sqrt{2} - \sqrt{2} = \sqrt{2}$

Circle *C* with centre (-g, -f), radius *r*.

 $x^2 + y^2 + 2gx + 2fy + c = 0$ 3

 $r = \sqrt{g^2 + f^2 - c} \qquad \dots \dots$

Therefore, the circles touch internally.

1 (b) (ii)

As can be seen from the diagram, the centre of C_1 lies on C_2 because its radius is twice that of C_2 . The point (3, 4) is the mid-point of (2, 3) and the point of contact.

 $(2,3) \rightarrow (3,4) \rightarrow (4,5)$

(4, 5) is the point of contact between the two circles.

