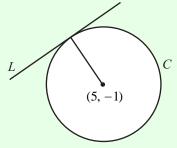
CIRCLE (Q 1, PAPER 2)

2006

1 (a) a(-1, -3) and b(3, 1) are the end-points of a diameter of a circle. Write down the equation of a circle.

1 (b) Circle C has centre (5, -1). The line L: 3x - 4y + 11 = 0 is a tangent to C.

- (i) Show that the radius of C is 6.
- (ii) The line x + py + 1 = 0 is also a tangent to C. Find two possible values of p.



1 (c) S is the circle $x^2 + y^2 + 4x + 4y - 17 = 0$ and K is the line 4x + 3y = 12.

(i) Show that the line *K* does not intersect *S*.

(ii) Find the co-ordinates of the point on *S* that is closest to *K*.

SOLUTION

1 (a)

The centre o is the mid-point of [ab].

Mid-point =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-1 + 3}{2}, \frac{-3 + 1}{2}\right) = (1, -1)$$

The radius of the circle is half the distance |ab|.

$$r = \frac{1}{2}\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \frac{1}{2}\sqrt{(3+1)^2 + (1+3)^2} = \frac{1}{2}\sqrt{32} = 2\sqrt{2}$$

Circle C with centre (h, k), radius r. $(x-h)^2 + (y-k)^2 = r^2$

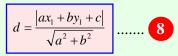
C: $(x-1)^2 + (y+1)^2 = (2\sqrt{2})^2 \Rightarrow (x-1)^2 + (y+1)^2 = 8$. This answer is fine. However, if you decide to expand the equation you will get: $x^2 + y^2 - 2x + 2y - 6 = 0$

1 (b) (i)

The radius of the circle is the perpendicular distance from the centre to the tangent.

Centre (5, -1), L: 3x-4y+11=0

$$d = \frac{\left|3(5) - 4(-1) + 11\right|}{\sqrt{3^2 + (-4)^2}} = \frac{\left|15 + 4 + 11\right|}{\sqrt{25}} = \frac{30}{5} = 6$$



1 (b) (ii)

The perpendicular distance of the centre to this line is the radius (6 units).

Centre (5, -1), L: x + py + 1 = 0, d = r = 6

$$\therefore 6 = \frac{|5 + p(-1) + 1|}{\sqrt{1^2 + p^2}} \Rightarrow 6\sqrt{p^2 + 1} = |6 - p|$$

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \dots 8$$

$$\Rightarrow$$
 36($p^2 + 1$) = 36 – 12 $p + p^2$ [Square both sides]

$$\Rightarrow$$
 36 p^2 + 36 = 36 - 12 p + p^2 \Rightarrow 35 p^2 + 12 p = 0

$$\Rightarrow p(35p+12) = 0 \Rightarrow p = 0, -\frac{12}{35}$$

1 (c) (i)

To show that the line K does not intersect the circle S can be done in two ways:

Method 1: Solve *K* and *S* simultaneously and show it has no real solutions.

Method 2: Show that the perpendicular distance from the centre of the circle to the line K is greater than the radius of the circle. [This is a better method.]

Method 1: *K*:
$$4x + 3y = 12 \Rightarrow x = \frac{12 - 3y}{4}$$

S:
$$x^2 + y^2 + 4x + 4y - 17 = 0 \Rightarrow \left(\frac{12 - 3y}{4}\right)^2 + y^2 + 4\left(\frac{12 - 3y}{4}\right) + 4y - 17 = 0$$

$$\Rightarrow \left(\frac{144 - 72y + 9y^2}{16}\right) + y^2 + 12 - 3y + 4y - 17 = 0$$

$$\Rightarrow$$
 144 - 72y + 9y² + 16y² + 192 - 48y + 64y - 272 = 0

$$\Rightarrow 25y^2 - 56y + 64 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \text{Remember: If } b^2 - 4ac \ge 0 \Rightarrow \text{ Real roots.}$$
If $b^2 - 4ac < 0 \Rightarrow \text{ Unreal or complex roots.}$

$$a = 25$$
, $b = -56$, $c = 64$

$$b^2 - 4ac = (-56)^2 - 4(25)(64) = 3136 - 6400 = -3264 < 0$$

Therefore, there are no real solutions and so *K* and *S* do not intersect.

Method 2:

$$S: x^2 + y^2 + 4x + 4y - 17 = 0$$

S:
$$x^2 + y^2 + 4x + 4y - 17 = 0$$

Centre $(-2, -2)$, $r = \sqrt{g^2 + f^2 - c} = \sqrt{4 + 4 + 17} = 5$

$$d = \frac{|4(-2) + 3(-2) - 12|}{\sqrt{2}} = \frac{|-26|}{\sqrt{2}} = \frac{26}{\sqrt{2}} > 5$$

$$|ax + by + c|$$

$$d = \frac{\left|4(-2) + 3(-2) - 12\right|}{\sqrt{4^2 + 3^2}} = \frac{\left|-26\right|}{5} = \frac{26}{5} > 5$$

Circle C centre (-g, -f), radius r.

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 3

$$r = \sqrt{g^2 + f^2 - c} \qquad \dots \qquad 4$$

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$
 8

1 (c) (ii)

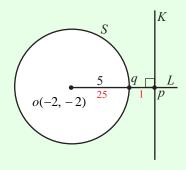
You need to find the co-ordinates of point q. There are two methods to do this. They both involve finding the equation of L, which is perpendicular to K and contains o(-2, -2).

Equation of L: Point (-2, -2), $m = \frac{3}{4}$

L:
$$3x - 4y + k = 0$$

$$(-2, -2) \in L \Rightarrow 3(-2) - 4(-2) + k = 0 \Rightarrow -6 + 8 + k = 0 \Rightarrow k = -2$$

Equation of L: 3x-4y-2=0



Method 1: q divides the line op in the ratio 25:1. [The distance op is $\frac{26}{25}$ whereas the distance oq is $5 = \frac{25}{25}$.] You need to find p by solving lines K and L simultaneously.

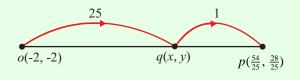
$$\begin{array}{c}
 4x + 3y = 12(\times 4) \\
 3x - 4y = 2(\times 3)
 \end{array}$$

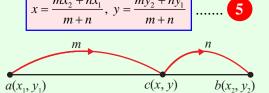
$$\begin{array}{c}
 16x + 12y = 48 \\
 9x - 12y = 6 \\
 \hline
 25x = 54 \Rightarrow x = \frac{54}{25}
 \end{array}$$

$$4x + 3y = 12$$

$$\Rightarrow y = \frac{12 - 4x}{3} = \frac{12 - 4(\frac{54}{25})}{3} = \frac{28}{25}$$

Therefore, the co-ordinates of $p(\frac{54}{25}, \frac{28}{25})$.





$$x = \frac{25(\frac{54}{25}) + 1(-2)}{25 + 1} = \frac{54 - 2}{26} = \frac{52}{26} = 2 \text{ and } y = \frac{25(\frac{28}{25}) + 1(-2)}{25 + 1} = \frac{28 - 2}{26} = \frac{26}{26} = 1$$

Therefore, the co-ordinates of q(2, 1).

Method 2: Intersect line L with circle S by solving simultaneously. There will be two solutions. q is the point closer to p.

$$L: 3x - 4y = 2 \Rightarrow x = \frac{4y + 2}{3}$$

S:
$$x^2 + y^2 + 4x + 4y - 17 = 0 \Rightarrow \left(\frac{4y + 2}{3}\right)^2 + y^2 + 4\left(\frac{4y + 2}{3}\right) + 4y - 17 = 0$$

$$\Rightarrow \left(\frac{16y^2 + 16y + 4}{9}\right) + y^2 + \left(\frac{16y + 8}{3}\right) + 4y - 17 = 0$$

$$\Rightarrow$$
 16 y^2 +16 y + 4 + 9 y^2 + 48 y + 24 + 36 y -153 = 0

$$\Rightarrow 25y^2 + 100y - 125 = 0 \Rightarrow y^2 + 4y - 5 = 0$$

$$\Rightarrow$$
 $(y+5)(y-1) = 0 \Rightarrow y = -5, 1 \Rightarrow x = -6, 2$

Therefore, the points of intersection are: (-6, -5), (2, 1)

The answer is (2, 1) as it is closer to the line. You can check by using the perpendicular distance formula.