Circle (Q 1, Paper 2)

2002

1 (a) The following parametric equations define a circle: $x=4+3 \cos \theta, y=-2+3 \sin \theta$, where $\theta \in \mathbf{R}$. What is the Cartesian equation of the circle?

1 (b) The points $a(-2,4), b(0,-10)$ and $c(6,-2)$ are the vertices of a triangle.
(i) Verify the the triangle is right-angled at c.
(ii) Hence, or otherwise, find the equation of the circle that passes through the points a, b and c.

1 (c) The circle C has equation $x^{2}+y^{2}-4 x+6 y-12=0 . L$ intersects C at the points p and q. M intersects C at the points t and $s .|p q|=|t s|=8$.
(i) Find the radius of C and hence show that the distance from the centre of C to each of the lines L and M is 3 .

(ii) Given that L and M intersect at the point ($-4,0$), find the equations of L and M.

Solution

1 (a)

Steps

1. Isolate the trig functions.
2. Square both sides.
3. Add.
4. Put $\cos ^{2} t+\sin ^{2} t=1$.

Parametric Equations: $x=4+3 \cos \theta, y=-2+3 \sin \theta$

$$
\begin{aligned}
x-4=3 \cos \theta \Rightarrow & (x-4)^{2}=9 \cos ^{2} \theta \\
y+2=3 \sin \theta \Rightarrow & (y+2)^{2}=9 \sin ^{2} \theta \\
& (x-4)^{2}+(y+2)^{2}=9\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& \Rightarrow(x-4)^{2}+(y+2)^{2}=9
\end{aligned}
$$

1 (b) (i)

To show $a c \perp b c$

$$
\begin{equation*}
m=\tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{2}
\end{equation*}
$$

Slope of $b c$: $m_{2}=\frac{-10+2}{0-6}=\frac{-8}{-6}=\frac{4}{3}$

$$
\text { Two lines are perpendicular if the product of their slopes is }-1 \text {. }
$$

$$
K \perp L \Leftrightarrow m_{1} \times m_{2}=-1
$$

$m_{1} \times m_{2}=\left(-\frac{3}{4}\right)\left(\frac{4}{3}\right)=-1 \Rightarrow a c \perp b c$

1 (b) (ii)

The best way to do this question is to find the centre and radius of the circle from the points given. This is easily done if you remember a theorem from your Junior Cert, i.e. the angle standing on the diameter of a circle is a right-angle. As $\angle a c b$ is a right angle, it follows that [ab] is the diameter of the circle.
Therefore, the centre is the midpoint of [ab].
Centre: $\left(\frac{-2+0}{2}, \frac{4-10}{2}\right)=(-1,-3)$
The radius is the distance from the centre to any point, say a.
$r=\sqrt{(-2+1)^{2}+(4+3)^{2}}=\sqrt{1+49}=\sqrt{50}$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
1

Equation of circle: Centre $(-1,-3), r=\sqrt{50}$
$(x+1)^{2}+(y+3)^{2}=50$
This answer is fine. If you multiply this equation out you get: $x^{2}+y^{2}+2 x+6 y-40=0$

Circle C with centre (h, k), radius r.

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{2}
\end{equation*}
$$

1 (c) (i) Circle C centre $(-g,-f)$, radius r.

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y+c=0 \ldots \ldots . \tag{3}
\end{equation*}
$$

$$
r=\sqrt{g^{2}+f^{2}-c}
$$

4

Some properties of chords

1. The line K intersects the circle at points u and v.
2. $[u v]$ is a chord.
3. The mid-point of the chord $[u v]$ is w.
4. The line from the centre of the circle to w is perpendicular to the chord.
5. You can apply Pythagoras by completing a right-angled triangle.
6. The perpendicular distance of p to K is the distance l. Obviously, $l<r$.

Circle C: $x^{2}+y^{2}-4 x+6 y-12=0$
Centre $(2,-3), r=\sqrt{4+9+12}=5$
Apply Pythagoras to the right-angled triangles to show the distance l is 3 .
$\therefore 4^{2}+l^{2}=5^{2} \Rightarrow l^{2}=25-16=9 \Rightarrow l=3$

1 (c) (ii)

Equations of L and M : Point ($-4,0$), Slope $=+\frac{m}{1}$
$\Rightarrow m x-y+k=0$
$\Rightarrow m(-4)-(0)+k=0 \Rightarrow k=4 m$
$\Rightarrow m x-y+4 m=0$
You know that the perpendicular distance from the centre to L and M is 3 .

$$
\begin{equation*}
d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \tag{8}
\end{equation*}
$$

$3=\frac{|m(2)-(-3)+4 m|}{\sqrt{m^{2}+1}} \Rightarrow 3 \sqrt{m^{2}+1}=|6 m+3| \Rightarrow \sqrt{m^{2}+1}=|2 m+1|$
$\Rightarrow m^{2}+1=4 m^{2}+4 m+1 \Rightarrow 3 m^{2}+4 m=0$
$\Rightarrow m(3 m+4)=0 \Rightarrow m=0,-\frac{4}{3}$
Substitute these values of m into equation 1 to give the two equations L and M.
$m=0 \Rightarrow y=0$
$m=-\frac{4}{3} \Rightarrow-\frac{4}{3} x-y+4\left(-\frac{4}{3}\right)=0 \Rightarrow 4 x+3 y+16=0$

