Circle (Q 1, Paper 2)

2009
1 (a) Show that, for all values of $t \in \mathbf{R}$, the point $\left(\frac{2 t}{1+t^{2}}, \frac{1-t^{2}}{1+t^{2}}\right)$ lies on the circle $x^{2}+y^{2}=1$.
(b) (i) Find the equation of the tangent to the circle $x^{2}+y^{2}=10$ at the point $(3,1)$.
(ii) Find the values of $k \in \mathbf{R}$ for which the line $x-y+k=0$ is a tangent to the circle $(x-3)^{2}+(y+4)^{2}=50$.
(c) Two circles intersect at $p(2,0)$ and $q(-2,8)$. The distance from the centre of each circle to the common chord $[p q]$ is $\sqrt{20}$. Find the equations of the two circles.

Answers

1 (b) (i) $3 x+y-10=0$
(ii) $k=-17,3$
(c) $x^{2}+y^{2}+8 x-4 y-20=0, x^{2}+y^{2}-8 x-12 y+12=0$

