Circle (Q 1, Paper 2)

2003

1 (a) For all values of $t \in \mathbf{R}$, the point $\left(\frac{3-3 t^{2}}{1+t^{2}}, \frac{6 t}{1+t^{2}}\right)$ lies on the circle $x^{2}+y^{2}=r^{2}$. Find r, the radius of the circle.

1 (b) $C_{1}: x^{2}+y^{2}+2 x-2 y-23=0$ and $C_{2}: x^{2}+y^{2}-14 x-2 y+41=0$ are two circles.
(i) Prove that C_{1} and C_{2} touch externally.
(ii) K is a third circle. Both C_{1} and C_{2} touch K internally. Find the equation of K.

1 (c) The line $a x+b y=0$ is a tangent to the circle $x^{2}+y^{2}-12 x+6 y+9=0$ where $a, b \in \mathbf{R}$ and $b \neq 0$.
(i) Show that $\frac{a}{b}=-\frac{3}{4}$.
(ii) Hence, or otherwise, find the co-ordinates of the point of contact.

> Answers
> 1 (a) $r=3$
> 1 (b) (ii) $K:(x-2)^{2}+(y-1)^{2}=64$
> 1 (c) (ii) $\left(\frac{12}{5}, \frac{9}{5}\right)$

