CIRCLE (Q 1, PAPER 2)

2003

1 (a) For all values of $t \in \mathbf{R}$, the point $\left(\frac{3-3t^2}{1+t^2}, \frac{6t}{1+t^2}\right)$ lies on the circle $x^2 + y^2 = r^2$.

Find *r*, the radius of the circle.

- 1 (b) C_1 : $x^2 + y^2 + 2x 2y 23 = 0$ and C_2 : $x^2 + y^2 - 14x - 2y + 41 = 0$ are two circles.
 - (i) Prove that C_1 and C_2 touch externally.
 - (ii) K is a third circle. Both C_1 and C_2 touch K internally. Find the equation of K.

1 (c) The line ax + by = 0 is a tangent to the circle $x^2 + y^2 - 12x + 6y + 9 = 0$ where $a, b \in \mathbf{R}$ and $b \neq 0$.

- (i) Show that $\frac{a}{b} = -\frac{3}{4}$.
- (ii) Hence, or otherwise, find the co-ordinates of the point of contact.

Answers 1 (a) r = 31 (b) (ii) K: $(x-2)^2 + (y-1)^2 = 64$ 1 (c) (ii) $(\frac{12}{5}, \frac{9}{5})$