Circle (Q 1, Paper 2)

1999

1 (a) Find the Cartesian equation of the circle
$x=6+\cos \theta, y=4+\sin \theta$,
where $0 \leq \theta \leq 2 \pi$.
1 (b) The equation of a circle with radius length 7 is
$x^{2}+y^{2}-10 k x+6 y+60=0$ where $k>0$.
(i) Find the centre of the circle in terms of k.
(ii) Find the value of k.
(iii) The line $3 x+4 y+d=0$ is a tangent to the circle, where $d \in \mathbf{Z}$.

Show that one value for d is 17 .
Find the other value for d.
1 (c) Two circles intersect at the points $a(1,2)$ and $b(7,-6)$. The line joining the centres of the circles is the perpendicular bisector of [ab].
The distance form the centre of each circle to the midpoint of [ab] is 10 .
Find the midpoint of $[a b]$ and the radius length of each circle.
Find the equation of each circle.

Answers

1 (a) $(x-6)^{2}+(y-4)^{2}=1$
1 (b) (i) $(5 k,-3)$
(ii) $k=2$
(iii) $d=-53$

1 (c) $(4,-2), r=5 \sqrt{5}$

$$
x^{2}+y^{2}-24 x-8 y+35=0, x^{2}+y^{2}+8 x+16 y-45=0
$$

