STATISTICS (Q 7, PAPER 2)

2011

- **7.** (a) Calculate the mean of the numbers 8, 6, 1, 3, 7, 8, 2.
 - (b) An information evening was held at a school. The number of people who entered the school during 20 minute intervals, beginning at 18:00, is given in the following table:

Time	Number of people			
18:00-18:20	35			
18:20-18:40	55			
18:40-19:00	190			
19:00 - 19:20	140			
19:20 - 19:40	110			
19:40-20:00	70			

[Note: 18:20 – 18:40 means 18:20 or later, but before 18:40, etc.]

(i) Copy and complete the following cumulative frequency table:

Number of people

- (ii) Draw the cumulative frequency curve (ogive).
- (iii) Use your curve to estimate the interquartile range.

PTO

- (ii) The mean mark was 60. Taking the mid-interval values of the completed frequency table, find the standard deviation, correct to the nearest integer.
- (iii) Find the maximum possible number of candidates whose marks were within one standard deviation of the mean.

SOLUTION

7 (a)

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{\text{Sum of the Numbers}}{\text{Number of Numbers}} = \frac{\sum x}{N}$$

$$\overline{x} = \frac{8+6+1+3+7+8+2}{7} = \frac{35}{7} = 5$$

7 (b) (i)

Construct a cumulative frequency table:

There are 35 people who arrived before 18.20.

There are 90 people (35 + 55) who arrived before 18.40.

There are 280 people (35 + 55 + 190) who arrived before 19.00. And so on....

Time	Number of people			
Before 18:20	35			
Before 18:40	90			
Before 19:00	280			
Before 19:20	420			
Before 19:40	530			
Before 20:00	600			

The lower quartile (Q_1) : Go to 150 on the vertical axis (one-quarter of the people). The lower quartile is 18:47.

The upper quartile (Q_3) : Go to 450 on the vertical axis (three-quarters of the people). The upper quartile is 19:30.

The interquartile range: $Q_3 - Q_1 = 19:30$ hours - 18:47 hours = 43 minutes.

7 (c) (i)

The first number is filled in for the range 20 - 30 marks. You can see from the histogram that each rectangular block represents 2 candidates.

Marks	20 - 30	30 - 40	40 - 60	60 - 90	90 - 100
Number of candidates	4	16	36	18	18

7 (c) (ii)

Fill out the table below as shown. *x* represents mid-interval values. For example, in the range 20-30 add the values and divide by 2 to get a value of 25.

The mean $\overline{x} = 60$.

The deviation, *d*, is given by the formula: $d = (x - \overline{x}) = ($ Number – Mean).

To work out *d*, get the difference between each number *x* and the mean \overline{x} .

x	f	fx	d	d^2	fd^2	
25	4	100	-35	1225	4900	1
35	16	560	-25	625	10000	
50	36	1800	-10	100	3600	
75	18	1350	15	225	4050	
95	18	1710	35	1225	22050	0
	92	5520			44600	

 $\sigma = \sqrt{\frac{\sum fd^2}{\sum f}}$ f: Frequency σ : Standard deviation $\sigma = \sqrt{\frac{44600}{92}} = 22$

7 (c) (iii)

Marks	20 - 30	30 - 40	40 - 60	60 – 90	90 - 100
Number of candidates	4	16	36	18	18

A standard deviation of 22 added to and subtracted from 60 puts you in the range of marks highlighted in the table.

Maximum possible number of students = 16 + 36 + 18 = 70