Statistics (Q 7, Paper 2)

2006

7 (a) The mean of the five numbers $2,4,7,8,9$ is 6 .
Calculate the standard deviation of the five numbers, correct to one decimal place.
(b) The number of new cars in various price ranges sold by a retailer in one month is recorded in the following table:

Price (€1000's)	$10-15$	$15-20$	$20-25$	$25-30$	$30-50$
Number sold	5	15	25	15	20

[Note: 15-20 means at least 15 but less than 20, etc.]
(i) Draw a histogram to represent the data.
(ii) By taking the data at the mid-interval values, calculate the mean price per car.
(iii) Copy and complete the following cumulative frequency table:

Price (€1000's)	<15	<20	<25	<30	<50
Number sold					

(iv) Draw the cumulative frequency curve (ogive).
(v) Using your curve, estimate how many of the cars sold were priced between the mean and the median.

Solution

7 (a)

Steps

1. Find the mean.
2. Draw up a table of x, d and d^{2}.
3. Apply the standard deviation formula.
4. This is done for you.

$$
\bar{x}=6
$$

2. The deviation, d, is given by the formula:
$d=(x-\bar{x})=($ Number - Mean $)$.
To work out d, get the difference between each number, x, and the mean, \bar{x}.
3. $\sigma=\sqrt{\frac{34}{5}}=2.6$

$$
\sigma=\sqrt{\frac{\text { Sum of (Deviations) }}{\text { Number of numbers }}}=\sqrt{\frac{\sum d^{2}}{N}}
$$

x	d	d^{2}
2	-4	16
4	-2	4
7	1	1
8	2	4
9	3	9
		34

7 (b) (i)

Price (€1000's)	$10-15$	$15-20$	$20-25$	$25-30$	$30-50$
Number sold	5	15	25	15	20

Each column in the table is represented by a rectangular box. The area of the box corresponds to the frequency (no. of students).

$$
\text { Area (No. of students) }=\text { Base } \times \text { Height }=\text { Frequency }
$$

Look at the prices. Pick out the smallest interval $(10-15)$ and make this base one unit.
Therefore the interval $30-50$ has a base of 4 units. Divide the base into the area (frequency) to get the height of a box.
Draw a new table:

Interval (Prices)	$10-15$	$15-20$	$20-25$	$25-30$	$30-50$
Frequency (No. sold)	5	15	25	15	20
Base	1	1	1	1	4
Height	5	15	25	15	5

Drawing the histogram:
Horizontal (x-axis) axis (Prices): Look at the intervals. The prices go from 0 to 50. The smallest interval (Base 1) is 5 so go up in 5 's.
Vertical (y-axis) axis (No. sold): Always start at zero. The biggest number is the maximum height (i.e. 25).

7 (b) (ii)
Draw up a frequency table using the mid-interval values. To get a mid-interval value add the two numbers together and divide by 2 .
Ex. Class interval: 30-50
Mid-interval value: $\frac{30+50}{2}=40$

$$
\bar{x}=\frac{f_{1} x_{1}+f_{2} x_{2}+\ldots \ldots .+f_{N} x_{N}}{f_{1}+f_{2}+\ldots \ldots \ldots .+f_{N}}=\frac{\sum f x}{\sum f}
$$

x	f	$f x$
12.5	5	62.5
17.5	15	262.5
22.5	25	562.5
27.5	15	412.5
40.0	20	800
	80	2100

Mean price: $\bar{x}=\frac{\sum f x}{\sum f}=\frac{2100}{80}=26.25$

As the prices are in thousands of euro, the mean price is $€ 26.25 \times 1000=€ 26,250$

7 (b) (iii)

Price (€1000’s)	<15	<20	<25	<30	<50
Number sold	5	20	45	60	80

7 (b) (iv)

7 (b) (v)

Go to the mean price (26.25) on the horizontal axis. Draw a broken line up to the curve and across to the vertical axis. The number of cars sold at the mean price is 50 .
The median number of cars sold is 40 (half of 80).
No. of cars sold priced between the mean and median $=50-40=10$

