Statistics (Q 7, Paper 2)

2004
7 (a) The mean of the set of numbers $\{1,3,7,9\}$ is 5 .
Find the standard deviation, correct to one decimal place.
(b) The following table shows the time in minutes spent by customers in a cafeteria.

Time in minutes	$0-10$	$10-20$	$20-40$	$40-70$
Number of customers	80	100	160	60

[Note that 10 - 20 means at least 10 but less than 20 minutes etc.]
(i) Find the total number of customers.
(ii) Draw a histogram to represent the data.
(iii) By taking the data at the mid-interval values, calculate the mean number of minutes per customer.
(iv) What is the greatest number of customers who could have spent more than 30 minutes in the cafeteria?
(v) What is the least number of customers who could have spent more than 30 minutes in the cafeteria?

Solution

7 (a)

Steps

1. Find the mean.
2. Draw up a table of x, d and d^{2}.
3. Apply the standard deviation formula.
4. This is done for you.

$$
\bar{x}=5
$$

2.

> The deviation, d, is given by the formula: $d=(x-\bar{x})=($ Number - Mean).
> To work out d, get the difference between each number, x, and the mean, \bar{x}.

x	d	d^{2}
1	-4	16
3	-2	4
7	2	4
9	4	16
		40

3. $\sigma=\sqrt{\frac{40}{4}}=\sqrt{10}=3.2$

$$
\sigma=\sqrt{\frac{\text { Sum of (Deviations) }^{2}}{\text { Number of numbers }}}=\sqrt{\frac{\sum d^{2}}{N}}
$$

7 (b) (i)
Total number of customers $=80+100+160+60=400$
7 (b) (ii)

Time in minutes	$0-10$	$10-20$	$20-40$	$40-70$
Number of customers	80	100	160	60

Each column in the table is represented by a rectangular box. The area of the box corresponds to the frequency (no. of customers).

```
Area (No. of students) = Base }\times\mathrm{ Height = Frequency
```

Look at the times. Pick out the smallest interval $(0-10)$ and make this base one unit. Therefore the interval $20-40$ has a base of 2 units and the interval $40-70$ has a base of 3 units. Divide the base into the area (frequency) to get the height of a box.

Draw a new table:

Interval (Time)	$0-10$	$10-20$	$20-40$	$40-70$
Frequency (No. of customers)	80	100	160	60
Base	1	1	2	3
Height	80	100	80	20

Drawing the histogram:
Horizontal (x-axis) axis (Time): Look at the intervals. The times go from 0 to 70. The smallest interval (Base 1) is 10 so go up in 10's.
Vertical (y-axis) axis (No. of customers): Always start at zero. The biggest number is the maximum height (i.e. 100).

7 (b) (iii)

Draw up a frequency table using the mid-interval values. To get a mid-interval value add the two numbers together and divide by 2.
Ex. Class interval: 10 - 20
Mid-interval value: $\frac{10+20}{2}=15$

x	f	$f x$
5	80	400
15	100	1500
30	160	4800
55	60	3300
	400	10000

$$
\begin{equation*}
\bar{x}=\frac{f_{1} x_{1}+f_{2} x_{2}+\ldots \ldots .+f_{N} x_{N}}{f_{1}+f_{2}+\ldots \ldots \ldots+f_{N}}=\frac{\sum f x}{\sum f} \tag{2}
\end{equation*}
$$

Mean time: $\bar{x}=\frac{\sum f x}{\sum f}=\frac{10000}{400}=25$
7 (b) (iv)
160 customers were present in the time interval 20 - 30 minutes. All 160 customers could have been present for a time greater than 30 minutes.
Therefore, the greatest number of customers who could have been present for more than 30 minutes $=160+60=220$.

7 (b) (v)

160 customers were present in the time interval 20 - 30 minutes. All 160 customers could have been present for a time less than 30 minutes.
Therefore, the least number of customers who could have been present for more than 30 minutes $=60$.

