STATISTICS (Q 7, PAPER 2)

2004

- 7 (a) The mean of the set of numbers $\{1, 3, 7, 9\}$ is 5. Find the standard deviation, correct to one decimal place.
 - (b) The following table shows the time in minutes spent by customers in a cafeteria.

Time in minutes	0 – 10	10 - 20	20 - 40	40 - 70
Number of customers	80	100	160	60

[Note that 10 - 20 means at least 10 but less than 20 minutes etc.]

- (i) Find the total number of customers.
- (ii) Draw a histogram to represent the data.
- (iii) By taking the data at the mid-interval values, calculate the mean number of minutes per customer.
- (iv) What is the greatest number of customers who could have spent more than 30 minutes in the cafeteria?
- (v) What is the least number of customers who could have spent more than 30 minutes in the cafeteria?

SOLUTION

7 (a)

- STEPS
- **1**. Find the mean.
- **2**. Draw up a table of *x*, *d* and d^2 .
- **3**. Apply the standard deviation formula.
- **1**. This is done for you.

 $\overline{x} = 5$

2. The deviation, *d*, is given by the formula: $d = (x - \overline{x}) = ($ Number – Mean).To work out d, get the difference between each number, x, and the mean, \overline{x} .

3.
$$\sigma = \sqrt{\frac{40}{4}} = \sqrt{10} = 3.2$$

x	d	d^2
1	-4	16
3	-2	4
7	2	4
9	4	16
		40

$$\sigma = \sqrt{\frac{40}{4}} = \sqrt{10} = 3.2 \qquad \sigma = \sqrt{\frac{\text{Sum of (Deviations)}^2}{\text{Number of numbers}}} = \sqrt{\frac{\sum d^2}{N}} \qquad \dots \qquad 4$$

7 (b) (i)

Total number of customers = 80 + 100 + 160 + 60 = 400

7 (b) (ii)

Time in minutes	0 – 10	10 - 20	20 - 40	40 - 70
Number of customers	80	100	160	60

Each column in the table is represented by a rectangular box. The area of the box corresponds to the frequency (no. of customers).

Area (No. of students) = Base \times Height = Frequency

Look at the times. Pick out the smallest interval (0 - 10) and make this base one unit. Therefore the interval 20 - 40 has a base of 2 units and the interval 40 - 70 has a base of 3 units. Divide the base into the area (frequency) to get the height of a box.

Draw a new table:

Interval (Time)	0 – 10	10 - 20	20 - 40	40 - 70
Frequency (No. of customers)	80	100	160	60
Base	1	1	2	3
Height	80	100	80	20

Drawing the histogram:

Horizontal (*x*-axis) axis (Time): Look at the intervals. The times go from 0 to 70. The smallest interval (Base 1) is 10 so go up in 10's.

Vertical (*y*-axis) axis (No. of customers): Always start at zero. The biggest number is the maximum height (i.e. 100).

7 (b) (iii)

Draw up a frequency table using the mid-interval values. To get a mid-interval value add the two numbers together and divide by 2. **Ex.** Class interval: 10 - 20

Mid-interval value:
$$\frac{10+20}{2} = 15$$

x	f	fx
5	80	400
15	100	1500
30	160	4800
55	60	3300
	400	10000

$$\overline{x} = \frac{f_1 x_1 + f_2 x_2 + \dots + f_N x_N}{f_1 + f_2 + \dots + f_N} = \frac{\sum f x}{\sum f} \qquad \dots 2$$

Mean time: $\bar{x} = \frac{\sum fx}{\sum f} = \frac{10000}{400} = 25$

7 (b) (iv)

160 customers were present in the time interval 20 - 30 minutes. All 160 customers could have been present for a time greater than 30 minutes.

Therefore, the greatest number of customers who could have been present for more than 30 minutes = 160 + 60 = 220.

7 (b) (v)

160 customers were present in the time interval 20 - 30 minutes. All 160 customers could have been present for a time less than 30 minutes.

Therefore, the least number of customers who could have been present for more than 30 minutes = 60.