Statistics (Q 7, Paper 2)

2001
7 (a) (i) Calculate the mean of the following numbers

$$
2,3,5,7,8 .
$$

(ii) Hence, calculate the standard deviation of the numbers correct to one decimal place.
(b) The following table shows the distribution of the amounts spent by 40 customers in a shop:

Amount Spent (IR£)	$0-8$	$8-12$	$12-16$	$16-20$	$20-32$
Number of Customers	2	9	13	10	6

[Note: IR£8 - IR£12 means IR£8 or over but less than IR£12 etc.]
(i) Taking mid-interval values, estimate the mean amount spent by the customers.
(ii) Copy and complete the following cumulative frequency table:

Amount Spent (IR£)	<8	<12	<16	<20	<32
Number of Customers					

(iii) Draw a cumulative frequency curve (ogive).
(iv) Use your curve to estimate the number of customers who spent IR£25 or more.

Solution

7 (a) (i)
The mean or average of a set of numbers is calculated by adding the numbers together and dividing by the number of numbers.

$$
\text { Mean }=\frac{\text { Sum of the numbers }}{\text { Number of numbers }}
$$

The mean is denoted by \bar{x}.
$\bar{x}=\frac{2+3+5+7+8}{5}$

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots \ldots \ldots \ldots+x_{N}}{N}=\frac{\text { Sum of the Numbers }}{\text { Number of Numbers }}=\frac{\sum x}{N}
$$

7 (a) (ii)

Steps

1. Find the mean.
2. Draw up a table of x, d and d^{2}.
3. Apply the standard deviation formula.
4. This is done in part (i).
$\bar{x}=5$
5.

The deviation, d, is given by the formula:

x	d	d^{2}
2	-3	9
3	-2	4
5	0	0
7	2	4
8	3	9
		26

3. $\sigma=\sqrt{\frac{26}{5}}=2.3$

$$
\sigma=\sqrt{\frac{\text { Sum of (Deviations) }{ }^{2}}{\text { Number of numbers }}}=\sqrt{\frac{\sum d^{2}}{N}}
$$4

7 (b) (i)

Draw up a frequency table using the mid-interval values. To get a mid-interval value add the two numbers together and divide by 2 .
Ex. Class interval: 8-12
Mid-interval value: $\frac{8+12}{2}=10$

$$
\begin{equation*}
\bar{x}=\frac{f_{1} x_{1}+f_{2} x_{2}+\ldots \ldots .+f_{N} x_{N}}{f_{1}+f_{2}+\ldots \ldots \ldots .+f_{N}}=\frac{\sum f x}{\sum f} \tag{2}
\end{equation*}
$$

x	f	$f x$
4	2	8
10	9	90
14	13	182
18	10	180
26	6	156
	40	616

Mean price: $\bar{x}=\frac{\sum f x}{\sum f}=\frac{616}{40}=€ 15.40$
7 (b) (ii)

Amount Spent (IR£)	<8	<12	<16	<20	<32
Number of Customers	2	11	24	34	40

7 (b) (iii)

7 (b) (iv)
Amount Spent 25
Go to $£ 25$ on the horizontal axis. Draw a line straight up until it meets the curve and then go across where, as you can see, there are 37 customers. Therefore, the number of customers who spent more that $£ 35$ is $40-37=3$ customers.

