
COUNTING & PROBABILITY (Q 6, PAPER 2)

LESSON NO. 5: SPECIAL PROBABILITY PROBLEMS

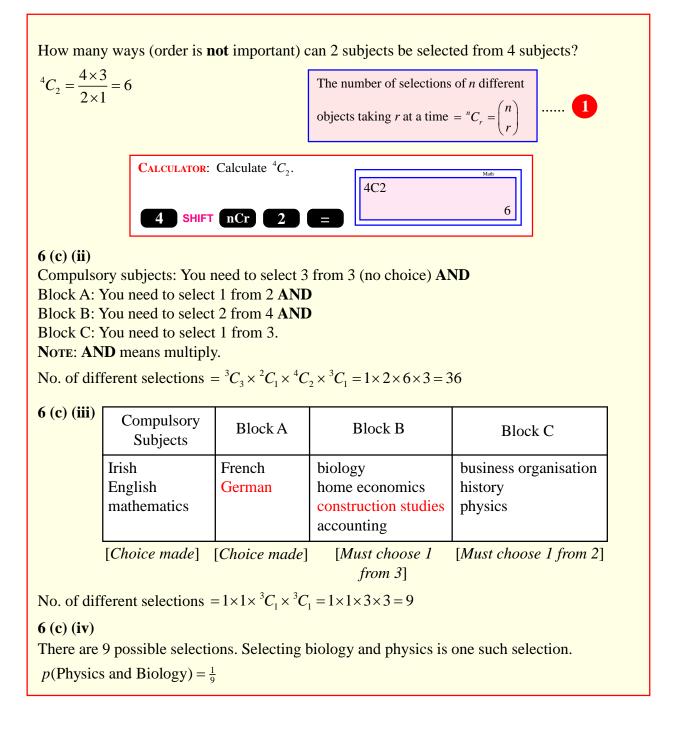
How many ways can 2 horses be picked selected from 7 horses where order is not important?

As there are 21 possibilities for selecting 2 horses out of 7 horses, there is a 21 to 1 chance of these 2 horses finishing in the first two places.

 $p(2 \text{ particular horses are the first two in the race}) = \frac{1}{21}$

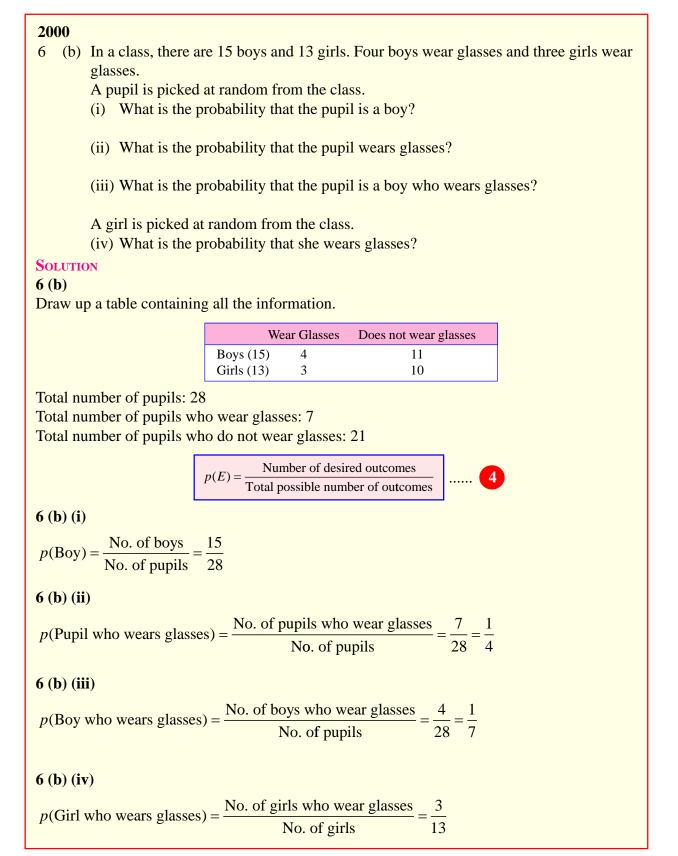
2003

6 (c) In a certain school the examination subjects for senior students are grouped as follows:


Compulsory Subjects	Block A	Block B	Block C
Irish English mathematics	French German	biology home economics construction studies accounting	business organisation history physics

As well as taking all three of the compulsory subjects, each student must choose *one* subject from Block A, *two* from Block B and *one* from Block C.

- (i) In choosing two subjects from Block B, how many different selections are possible?
- (ii) In choosing the full range of subjects, how many different selections are possible?
- (iii) One student has already decided to do German and construction studies. How many different selections of the remaining subjects are possible for this student?
- (iv) If the student referred to in part (iii) selects her remaining subjects at random, what is the probability that she will select both biology and physics?


SOLUTION

6 (c) (i)	Compulsory Subjects	Block A	Block B	Block C
	Irish English mathematics	French German	biology home economics construction studies accounting	business organisation history physics
	[Must take all 3]	[Must choose 1 from 2]	[Must choose 2 from 4]	[Must choose 1 from 2]

2002					
6 (b) A meeting is attended by 23 men and 21 women.					
Of the men, 14 are married and the others are single. Of the women, 8 are married and the others are single.					
(i) A person is picked at random. What is the probability that the person is a					
woman?					
(ii) A person is picked at random. What is the probability that the person is married?					
(iii) A man is picked at random. What is the probability that he is married?					
(iv) A woman is picked at random. What is the probability that she is single?					
Solution					
6 (b) Draw up a table containing all the information.					
MarriedSingleMen (23)147					
Women (21) 8 13					
Total number of people: 44					
Total number of married people: 22					
Total number of single people: 20					
$p(E) = \frac{\text{Number of desired outcomes}}{1}$					
Total possible number of outcomes					
6 (b) (i)					
$p(\text{Woman}) = \frac{\text{No. of women}}{1 - 1} = \frac{21}{1 - 1}$					
$p(\text{Woman}) = \frac{\text{No. of women}}{\text{No. of people}} = \frac{21}{44}$					
6 (b) (ii)					
$p(\text{Married person}) = \frac{\text{No. of married people}}{\text{No. of people}} = \frac{22}{44} = \frac{1}{2}$					
6 (b) (iii)					
$p(\text{Married man}) = \frac{\text{No. of married men}}{\text{No. of men}} = \frac{14}{23}$					
6 (b) (iv)					
$p(\text{Single woman}) = \frac{\text{No. of single women}}{\text{No. of women}} = \frac{13}{21}$					

٦

