Counting \& Probability (Q 6, Paper 2)

Lesson No. 1: Combinations

2006

6 (a) Evaluate $5\binom{8}{3}-4\binom{8}{4}$.
Solution

$$
\begin{aligned}
& 5\binom{8}{3}-4\binom{8}{4}=5\left(\frac{8 \times 7 \times 6}{3 \times 2 \times 1}\right)-4\left(\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}\right) \\
& =5(56)-4(70) \\
& =280-280=0
\end{aligned}
$$

Calculator: Calculate $5\binom{8}{3}-4\binom{8}{4}$.

$\binom{12}{3}=\frac{12 \times 11 \times 10}{3 \times 2 \times 1}=220$

2005

6 (a) (ii) Evaluate $\binom{12}{3}$.
Solution
$\binom{12}{3}=\frac{12 \times 11 \times 10}{3 \times 2 \times 1}=220$
Calculator: Calculate $\binom{12}{3}$.

2004

6 (b) A committee of 3 people is selected from a group of 15 doctors and 12 dentists. In how many different ways can the 3 people be selected
(i) if there are no restrictions
(ii) if the selection must contain exactly 2 doctors
(iii) if the selection must contain at least 1 doctor and at least 1 dentist
(iv) if the selection must contain one specific doctor and one specific dentist?

Solution

6 (b) (i)

$$
\begin{aligned}
& \text { The number of selections of } n \text { different } \\
& \text { objects taking } r \text { at a time }={ }^{n} C_{r}=\binom{n}{r}
\end{aligned}
$$

The number of ways of selecting 3 people from 27
people is: ${ }^{27} C_{3}=\binom{27}{3}=\frac{27 \times 26 \times 25}{3 \times 2 \times 1}=2,925$

Calculator: Calculate ${ }^{27} C_{3}$.

27 SHIFT nCr 3 =

6 (b) (ii)

You need to select 2 doctors from 15 doctors AND 1 dentist from 12 dentists.
${ }^{15} C_{2} \times{ }^{12} C_{1}=\left(\frac{15 \times 14}{2 \times 1}\right) \times\left(\frac{12}{1}\right)=1,260$

Note: AND means you multiply.

6 (b) (iii)

At least one doctor and at least one dentist can mean 2 doctors and 1 dentist OR 1 doctor and 2 dentists.

Note: OR means you add.
2 doctors and 1 dentist $\mathbf{O R} 1$ dentist and 2 doctors $=1,260+990=2,250$

6 (b) (iv)

If one specific doctor is chosen and one specific dentist is chosen you are left to pick one person from 14 doctors and 11 dentists (25 people).

${ }^{25} C_{1}=\left(\frac{25}{1}\right)=25$

2002

6 (a) There are eight questions on an examination paper.
(i) In how many different ways can a candidate select six questions?
(ii) In how many different ways can a candidate select six questions if one particular question must always be selected?

Solution

6 (a) (i)
The number of selections of n different objects taking r at a time $={ }^{n} C_{r}=\binom{n}{r}$

In how many ways can you select 6 questions out of 8 questions (order is not important)?

6 (a) (ii)

If one question must be answered, this means you have to select 5 questions from 7 questions.
${ }^{7} C_{5}=\binom{7}{5}=\binom{7}{2}=\frac{7 \times 6}{2 \times 1}=21$

2001

6 (c) (i) Eight points lie on a circle, as in the diagram. How many different lines can be drawn by joining any two of the eight points?
(ii) Find the value of the natural number n such that

$$
\binom{n}{2}=105 .
$$

[Note: $\binom{n}{2}$ may also be written as ${ }^{n} C_{2}$.]
Solution

6 (c) (i)

> The number of selections of n different objects taking r at a time $={ }^{n} C_{r}=\binom{n}{r}$

1

Lines are formed by selecting points in pairs. There are 8 points. In how many ways can you select 2 points from 8 different points?
${ }^{8} C_{2}=\frac{8 \times 7}{2 \times 1}=28$
Calculator: Calculate ${ }^{8} C_{2}$.

6 (c) (ii)
$\binom{n}{2}={ }^{n} C_{2}=105$
$\Rightarrow \frac{n(n-1)}{2 \times 1}=105$ [Multiply across by 2.]
$\Rightarrow n^{2}-n=210$
$\Rightarrow n^{2}-n-210=0$
$\Rightarrow(n-15)(n+14)=0$
$\therefore n=15$ [Ignore the negative solution as n is a natural number (a whole positive number).]

1999

6 (a) (i) In how many ways can a team of 5 players be chosen from a panel of 8 players?
(ii) If a certain player must be on the team, in how many ways can the team be then chosen.

Solution

6 (a) (i)

> The number of selections of n different objects taking r at a time $={ }^{n} C_{r}=\binom{n}{r}$

The number of selections of 8 different players taking 5 at a time $={ }^{8} C_{5}=\binom{8}{5}$. ${ }^{8} C_{5}=\binom{8}{5}=\frac{8 \times 7 \times 6 \times \not 5 \times \neq A}{\not 5 \times \not 2 \times 3 \times 2 \times 1}=56$

Calculator: Calculate ${ }^{8} C_{5}$.

8 SHIFT $\mathrm{nCr} 5=$
8C5
56

6 (a) (ii)

If a certain player must be on the team, you need to choose 4 players from the remaining 7 players.
${ }^{7} C_{4}=\binom{7}{4}=\frac{7 \times 6 \times 5 \times 4}{A \times 3 \times 2 \times 1}=35$

1998

6 (b) A committee of 4 people is to be formed from a group of 7 men and 6 women.
(i) How many different committees can be formed?
(ii) On how many of these committees is there an equal number of men and of women?

Solution

6 (b) (i)

The number of selections of n different objects taking r at a time $={ }^{n} C_{r}=\binom{n}{r}$..... (1)

In total there are 13 people (7 men and 6 women).
In how many ways can you pick 4 people on the committee from 13 people?

${ }^{13} C_{4}=\binom{13}{4}=\frac{13 \times 12 \times 11 \times 10}{4 \times 3 \times 2 \times 1}=715$
Calculator: Calculate ${ }^{13} C_{4}$.

6 (b) (ii)

You need to pick 2 men and 2 women for the committee to have an equal number of men and women.
How many ways can you pick 2 men from 7 men and 2 women from 6 women?

Note: And means multiply.
${ }^{7} C_{2} \times{ }^{6} C_{2}=\binom{7}{2} \times\binom{ 6}{2}=\left(\frac{7 \times 6}{2 \times 1}\right) \times\left(\frac{6 \times 5}{2 \times 1}\right)=21 \times 15=315$

1997

6 (a) A class of 29 students wins a prize. Two members of the class are chosen to receive the prize. How many different pairs of students can be chosen?

Solution

The number of selections of n different

$$
\text { objects taking } r \text { at a time }={ }^{n} C_{r}=\binom{n}{r}
$$

1

In how many ways can 2 students be selected from 29 students (order is not important)?
${ }^{29} C_{2}=\binom{29}{2}=\frac{29 \times 28}{2 \times 1}=406$
Calculator: Calculate ${ }^{29} C_{2}$.

