Counting \& Probability (Q 6, Paper 2)

2009
6 (a) (i) Evaluate $\binom{7}{2}$.
(ii) Evaluate $\binom{7}{2}+\binom{7}{5}$.
(b) There are 210 boys and 240 girls in a school. The school has a junior cycle and a senior cycle. The number of boys and the number of girls in each cycle is shown in the table.

	Boys	Girls
Junior Cycle	120	130
Senior Cycle	90	110

(i) A student is picked at random.

What is the probability that the student is a boy?
(ii) A student is picked at random.

What is the probability that the student is in the senior cycle?
(iii) A junior cycle student is picked at random.

What is the probability that the student is a girl?
(iv) A boy is picked at random.

What is the probability that he is in the senior cycle?
(c) Three boys and two girls are seated in a row as a group.

In how many different ways can the group be seated if
(i) there are no restrictions on the order of seating
(ii) there must be a boy at the beginning of the row
(iii) there must be a boy at the beginning of the row and a boy at the end of the row (iv) the two girls must be seated beside each other?

Solution

6 (a) (i)
$\binom{7}{2}=\frac{7 \times 6}{2 \times 1}=21$

$$
\begin{aligned}
& 6 \text { (a) (ii) } \\
& \binom{7}{5}=\frac{7 \times 6 \times 5 \times 4 \times 3}{5 \times 4 \times 3 \times 2 \times 1}=21 \\
& \binom{7}{2}+\binom{7}{5}=21+21=42
\end{aligned}
$$

6 (b) (i)
No. of boys $=210$
No. of students $=450$

$$
p(\text { Boy })=\frac{\text { No. of boys }}{\text { No. of students }}=\frac{210}{450}=\frac{7}{15}
$$

$$
p(E)=\frac{\text { Number of desired outcomes }}{\text { Total possible number of outcomes }}
$$

6 (b) (ii)

No. of senior cycle students $=200$
No. of students $=450$
$p($ Senior cycle student $)=\frac{\text { No. of senior cycle students }}{\text { No. of students }}=\frac{200}{450}=\frac{4}{9}$

6 (b) (iii)

No. of girls in the junior cycle $=130$
No. of junior cycle students $=250$
$p($ Junior cycle girl $)=\frac{\text { No. of girls in the junior cycle }}{\text { No. of junior cycle students }}=\frac{130}{250}=\frac{13}{25}$

6 (b) (iv)

No. of boys in the junior cycle $=90$
No. of boys $=210$
$p($ Senior cycle boy $)=\frac{\text { No. of senior cycle boys }}{\text { No. of boys }}=\frac{90}{210}=\frac{3}{7}$

6 (c) (i)

There are 5 ways to fill the first seat.
Once this seat is filled, there are 4 ways to fill the second seat.
Once the first 2 seats are filled, there are 3 ways to fill the third seat and so on.
6 (c) (ii)

There are 3 ways to fill the first seat given a boy must sit there.
Once the first seat is filled, there are 4 ways to fill the second seat and so on.
6 (c) (iii)

There are 3 ways to fill the first seat given a boy must sit there.
Once the first seat is filled, there are 2 ways to fill the last seat as a boy must sit there.
Once these 2 seats are filled, there are 3 ways to fill the second seat and so on.

Glue the 2 girls together and treat this combination as a single seat. Therefore, there are now 4 seats.
There are 4 ways to fill the first seat (with one of 3 boys or the girl/girl combination).
Once this seat is filled, there are 3 ways to fill the second seat and so on.
The 2 girls can also switch places which doubles the number of combinations. So multiply by 2 to get the final answer.

