Counting \& Probability (Q 6, Paper 2)

2006

6 (a) Evaluate $5\binom{8}{3}-4\binom{8}{4}$.
(b) Niamh uses a password formed from one letter of her name followed by four of the digits from 1 to 9 . She does not use any digit more than once.
(i) How many such passwords can be formed?
(ii) How many of the passwords begin with N ?
(iii) How many of the passwords end in an even digit?
(iv) How many of the passwords begin with N and use only odd digits?
(c) Three coins are tossed. Each coin gives either a head or a tail.
(i) Write down all the possible outcomes. For example, "H, T, H" or "head, tail, head" is one possible outcome.
(ii) Find the probability that the result is three tails.
(iii) Find the probability that the result includes no more than one head.
(iv) Find the probability that the result has at least one head.

Solution

6 (a)
$5\binom{8}{3}-4\binom{8}{4}=5\left(\frac{8 \times 7 \times 6}{3 \times 2 \times 1}\right)-4\left(\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}\right)$
$=5(56)-4(70)$
$=280-280=0$
Calculator: Calculate $5\binom{8}{3}-4\binom{8}{4}$.

6 (b) (i)

There are 5 letters in her name. Therefore, there are 5 ways to fill the first box.
There are nine digits so there are 9 ways to fill the second box. As there are no repeats there are 8 ways to fill the third box and so on.

6 (b) (ii)

The first box is filled with N (one way). The rest of the boxes are filled in the same way.

$$
\text { Number of ways }=1 \times 9 \times 8 \times 7 \times 6=3,024
$$

6 (b) (iii)

There are 5 ways to fill the first box (from the letters of NIAMH).
Now fill the last box with the restriction. This box must contain an even digit. There are 4 ways to fill it (with a $2,4,6$ or 8).
Once the last box is filled, there are 8 ways to fill the second box and so on.

6 (b) (iv)

There is one way to fill the first box (with an N).
There are 5 ways to fill the second box as there are 5 odd digits (1, 3, 5, 7 or 9).
There are 4 ways to fill the third box and 3 ways to fill the last box.

$$
\text { Number of ways }=1 \times 5 \times 4 \times 3 \times 2=120
$$

6 (c) (i)
There are 8 possible outcomes:
HHH, HHT, HTH, THH, HTT, THT, TTH, TTT
6 (c) (ii)

$$
p(E)=\frac{\text { Number of desired outcomes }}{\text { Total possible number of outcomes }}
$$

HHH, HHT, HTH, THH, HTT, THT, TTH, TTT
$p(3$ Tails $)=\frac{1}{8}$
6 (c) (iii)
HHH, HHT, HTH, THH, HTT, THT, TTH, TTT
No more than one head means one head or no heads are present.
$p($ No more than one head $)=\frac{4}{8}=\frac{1}{2}$

6 (c) (iv)

At least one head means you can have 1 head, 2 heads or 3 heads.
ННН, HHT, НTH, THH, HTT, THT, TTH, TTT
$p($ At least one head $)=\frac{7}{8}$

