Counting \& Probability (Q 6, Paper 2)

2002
6 (a) There are eight questions on an examination paper.
(i) In how many different ways can a candidate select six questions?
(ii) In how many different ways can a candidate select six questions if one particular question must always be selected?
(b) A meeting is attended by 23 men and 21 women.

Of the men, 14 are married and the others are single.
Of the women, 8 are married and the others are single.
(i) A person is picked at random. What is the probability that the person is a woman?
(ii) A person is picked at random. What is the probability that the person is married?
(iii) A man is picked at random. What is the probability that he is married?
(iv) A woman is picked at random. What is the probability that she is single?
(c) The digits $0,1,2,3,4,5$ are used to form four-digit codes. A code cannot begin with 0 and no digit is repeated in any code.
(i) Write down the largest possible four-digit code.
(ii) Write down the smallest possible four-digit code.
(iii) How many four-digit codes can be formed?
(iv) How many of the four-digit codes are greater than 4000 ?

Solution

6 (a) (i)
The number of selections of n different
objects taking r at a time $={ }^{n} C_{r}=\binom{n}{r}$

In how many ways can you select 6 questions out of 8 questions (order is not important)?

Calculator: Calculate ${ }^{8} C_{6}$.

6 (a) (ii)
If one question must be answered, this means you have to select 5 questions from 7 questions.
${ }^{7} C_{5}=\binom{7}{5}=\binom{7}{2}=\frac{7 \times 6}{2 \times 1}=21$

6 (b)

Draw up a table containing all the information.

	Married	Single
Men (23)	14	7
Women (21)	8	13

Total number of people: 44
Total number of married people: 22
Total number of single people: 20

$$
p(E)=\frac{\text { Number of desired outcomes }}{\text { Total possible number of outcomes }}
$$

4
6 (b) (i)
$p($ Woman $)=\frac{\text { No. of women }}{\text { No. of people }}=\frac{21}{44}$

6 (b) (ii)

$p($ Married person $)=\frac{\text { No. of married people }}{\text { No. of people }}=\frac{22}{44}=\frac{1}{2}$
6 (b) (iii)
$p($ Married man $)=\frac{\text { No. of married men }}{\text { No. of men }}=\frac{14}{23}$
6 (b) (iv)
$p($ Single woman $)=\frac{\text { No. of single women }}{\text { No. of women }}=\frac{13}{21}$

6 (c) (i)
5 digits: $0,1,2,3,4,5$
0 cannot be in the first position.
No repeats.

Largest possible number:	$\boxed{5}$	4	3	2

6 (c) (ii)

Smallest possible number: | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- |

6 (c) (iii)
Number of 4 digit codes:
Number of ways $=5 \times 5 \times 4 \times 3=300$
Cannot be a zero $-\square \square$
Can be a zero but
not what is in the
first box

6 (c) (iv)

Number of 4 digit codes greater than 4000:
The first box must be filled with a 4 or 5 but not a zero (2 ways).
The second box can be filled 5 ways, the third 4 ways and so on.
Number of ways $=2 \times 5 \times 4 \times 3=120$
Must be a 4 or $5-\square \square \square \square$

