Counting \& Probability (Q 6, Paper 2)

1999

6 (a) (i) In how many ways can a team of 5 players be chosen from a panel of 8 players?
(ii) If a certain player must be on the team, in how many ways can the team be then chosen.
(b) (i) In how many different ways can the 5 letters of the word ANGLE be arranged?
(ii) How many of these arrangements begin with a vowel?
(iii) In how many of the arrangements do the two vowels come together?
(c) Twelve blood samples are tested in a laboratory. Of these it is found that five blood samples are of type A, four of type B and the remaining three are of type O.
Two blood samples are selected at random from the twelve.
What is the probability that
(i) the two samples are of type A
(ii) one sample is of type B and the other sample is of type O
(iii) the two sample are of the same blood type?

Solution

6 (a) (i)

> The number of selections of n different objects taking r at a time $={ }^{n} C_{r}=\binom{n}{r}$

The number of selections of 8 different players taking 5 at a time $={ }^{8} C_{5}=\binom{8}{5}$.

$$
{ }^{8} C_{5}=\binom{8}{5}=\frac{8 \times 7 \times 6 \times \not 8 \times \neq A}{\not B \times \not \subset A \times 3 \times 2 \times 1}=56
$$

Calculator: Calculate ${ }^{8} C_{5}$.

8 SHIFT $\mathrm{nCr} 5=$

6 (a) (ii)

If a certain player must be on the team, you need to choose 4 players from the remaining 7 players.
${ }^{7} C_{4}=\binom{7}{4}=\frac{7 \times 6 \times 5 \times A}{A \times 3 \times 2 \times 1}=35$

6 (b) (i)

Multiplication Principle:
There are 5 letters in total. Therefore, there are 5 ways to fill the first box. Once this is filled, there are 4 ways to fill the second box and so on.

$$
\text { Number of ways }=5 \times 4 \times 3 \times 2 \times 1=120
$$

OR
The number of arrangements of n different objects all taken, no repeats $=n$!

The number of arrangements of 5 different letters all taken, no repeats $=5$!
$5!=5 \times 4 \times 3 \times 2 \times 1=120$

Calculator: Calculate 5!
5 SHIFT $x!=$

6 (b) (ii)
There are 2 vowels (A and E). There are 2 ways to fill the first box. Once this is filled, there are 4 ways to fill the second box and so on.

$$
\text { Number of ways }=2 \times 4 \times 3 \times 2 \times 1=48
$$

6 (b) (iii)

Glue the two vowels together and treat as a single unit.

There are 4 ! ways of arranging 4 objects and then there are 2 ! ways of arranging the two objects glued together.
No. of arrangements of the 5 letters with the vowels side by side $=4!\times 2!=24 \times 2=48$
Note: The word and means multiply.

6 (c) (i)

$p(\mathbf{A}$ and $\mathbf{A})=p(\mathbf{A}) \times p(\mathbf{A})$
First pick: $p(\mathbf{A})=\frac{\text { No. of A's }}{\text { No. of samples }}=\frac{5}{12}$
For the second pick, there are $4 \mathbf{A}$'s left out of 11 samples.
Second pick: $p(\mathbf{A})=\frac{\text { No. of A's }}{\text { No. of samples }}=\frac{4}{11}$
$p(\mathbf{A}$ and $\mathbf{A})=\frac{5}{12} \times \frac{4}{11}=\frac{5}{33}$
6 (c) (ii)
$p(\mathbf{B}$ and $\mathbf{O})=p(\mathbf{B}) \times p(\mathbf{O}) \times 2$
You need to multiply your answer by two because you could pick \mathbf{B} first and \mathbf{O} second or \mathbf{O} first and \mathbf{B} second.

First pick: $p(\mathbf{B})=\frac{\text { No. of } \mathbf{B} \text { 's }}{\text { No. of samples }}=\frac{4}{12}=\frac{1}{3}$
For the second pick there are eleven samples left to pick from.
Second pick: $p(\mathbf{O})=\frac{\text { No. of } \mathbf{O} \text { 's }}{\text { No. of samples }}=\frac{3}{11}$
$p(\mathbf{B}$ and $\mathbf{O})=\frac{1}{3} \times \frac{3}{11} \times 2=\frac{2}{11}$

6 (c) (iii)
p (Same sample) $=p(2$ A's) or $p(2 \mathbf{B \prime s})$ or $p(2 \mathbf{O ’ s})$
[or means add the probabilities together.]
p (Same sample) $=p(2 \mathbf{A} \mathbf{s})+p(2 \mathbf{B} ’ \mathrm{~s})+p(2 \mathbf{O}$'s $)$
$p(\mathbf{A}$ and $\mathbf{A})=\frac{5}{33}$
$p(\mathbf{B}$ and $\mathbf{B})=\frac{4}{12} \times \frac{3}{11}=\frac{1}{11}$
$p(\mathbf{O}$ and $\mathbf{O})=\frac{3}{12} \times \frac{2}{11}=\frac{1}{22}$
$p($ Same sample $)=\frac{5}{33}+\frac{1}{11}+\frac{1}{22}=\frac{19}{66}$

