COUNTING & PROBABILITY (Q 6, PAPER 2)

1998

6	(a)	One (i)	letter is chosen at random from the letters of the word LEAVING. Find the probability that the letter chosen is L.	
		(ii)	Find the probability that the letter chosen is a vowel.	
	(b)	A c (i)	mmittee of 4 people is to be formed from a group of 7 men and 6 women. How many different committees can be formed?	
		(ii)	On how many of these committees is there an equal number of men and of women?	
	(c)	(i)	How many different numbers, each with 3 digits or less, can be formed from the digits 1, 2, 3, 4, 5? Each digit can be used only once in each number.	
		(ii)	How many of the above numbers are even?	
So	LUTI	ON		
6 (a) (i))	$p(E) = \frac{\text{Number of desired outcomes}}{\text{Total possible number of outcomes}} \qquad $	
			I	
$p(\mathbf{L}) = \frac{\text{No. of } \mathbf{L}\text{'s}}{\text{No. of letters}} = \frac{1}{7}$				
6 (a) (ii)				
$p(\text{Vowel}) = \frac{\text{No. of vowels}}{\text{No. of letters}} = \frac{3}{7}$				
6 (h) (i	`		
0(U) (I	,	The number of selections of <i>n</i> different	
			objects taking r at a time = ${}^{n}C_{r} = {n \choose r}$	
In	tatal	than	are 12 magnle (7 man and 6 warman)	
In how many ways can you pick 4 people on the committee				
from 13 people? 4 Places				
${}^{13}C_4 = \begin{pmatrix} 13\\4 \end{pmatrix} = \frac{13 \times 12 \times 11 \times 10}{4 \times 3 \times 2 \times 1} = 715$				
			CALCULATOR: Calculate ${}^{4}C_{4}$. 13 SHIFT DCr 4 = 714	

6 (b) (ii)

You need to pick 2 men and 2 women for the committee to have an equal number of men and women.

How many ways can you pick 2 men from 7 men AND 2 women from 6 women?

Note: AND means multiply.

$${}^{7}C_{2} \times {}^{6}C_{2} = {\binom{7}{2}} \times {\binom{6}{2}} = {\binom{7 \times 6}{2 \times 1}} \times {\binom{6 \times 5}{2 \times 1}} = 21 \times 15 = 315$$

6 (c) (i)

There are five digits (1, 2, 3, 4 and 5). How many three digit numbers, two digits numbers and single digit numbers can be formed from these five digits with no repeats?

THREE DIGIT NUMBERS:

There are 5 ways to fill the first box. Once this is filled there are 4 ways to fill the second box and three ways to fill the third box. Therefore, there are 60 possible three digit numbers.

Two digit numbers:

There are 5 ways to fill the first box. Once this is filled there are 4 ways to fill the second box. Therefore, there are 20 possible two digit numbers.

ONE DIGIT NUMBERS:

Obviously, there are 5 one digit numbers.

The total number of numbers of 3 digits or less: 60 + 20 + 5 = 85

6 (c) (ii)

EVEN THREE DIGIT NUMBERS:

The last box must be filled with an even digit in order for the number to be even. There are two ways to fill the last box (with a 2 or 4). Once the last box is filled there are fours ways to fill the first box and three ways to fill the second box.

EVEN TWO DIGIT NUMBERS:

The last box must be filled with an even digit in order for the number to be even. There are two ways to fill the last box (with a 2 or 4). Once the last box is filled there are fours ways to fill the first box.

EVEN ONE DIGIT NUMBERS:

Obviously there are 2 even one digit numbers.

The total number of even numbers of 3 digits or less: 24 + 8 + 2 = 34

 $\begin{array}{cccc}
7 \text{ Men} & 6 \text{ Women} \\
\downarrow & \downarrow \\
2 \text{ Men} & 2 \text{ Women}
\end{array}$

Number of ways = $5 \times 4 \times 3 = 60$

