## Counting \& Probability (Q 6, Paper 2)

## 1996

6 (a) A bag contains 24 beads of which 12 are red, 8 are blue and 4 are white. A bead is taken at random from the bag.
What is the probability that the colour of the bead is
(i) blue
(ii) red or white?
(b) There are 5 horses, $A, B, C, D$ and $E$, in a race. Each horse takes a different time to complete the race. On completing the race,
(i) in how many different placing arrangements can the 5 horses finish?
(ii) if $A$ is placed first and $B$ last, in how many different placing arrangements can the other horses finish?
(c) A committee of two people is chosen at random from 4 men and 5 women. What is the probability that there will be one woman or two women on the committee?

## Solution

5 (a) (i)

$$
p(E)=\frac{\text { Number of desired outcomes }}{\text { Total possible number of outcomes }} \ldots \ldots .
$$

$p($ Blue $)=\frac{\text { No. of blue discs }}{\text { No. of discs }}=\frac{8}{24}=\frac{1}{3}$
5 (a) (ii)
$p($ Red or White $)=\frac{\text { No. of Red and White discs }}{\text { No. of discs }}=\frac{16}{24}=\frac{2}{3}$
5 (b) (i)
Multiplication Principle: There are 5 horses that can finish in first place. Once a horse finishes in first place there are 4 horses that can finish in second place and so on.


OR
The number of arrangements of $n$ different objects all taken, no repeats $=n$ !

3
The number of arrangements of 5 different horses all taken, no repeats $=5$ !
$5!=5 \times 4 \times 3 \times 2 \times 1=120$

Calculator: Calculate 5!
5 SHIFT $x$ ! $=$


## 5 (b) (ii)

$$
\text { Number of ways }=1 \times 3 \times 2 \times 1 \times 1=6
$$



There is one way to fill the first box (with $\mathbf{A}$ ) and one way to fill the last box (with $\mathbf{B}$ ). Once these are filled there are 3 horses left to fill the second box, 2 left to fill the third box and 1 horse left to fill the fourth box.

## 5 (c)

First, work out the total number of 2 person committees that can be picked from 9 people.


The number of selections of 9 different people taking 2 at a time:
${ }^{9} C_{2}=\binom{9}{2}=\frac{9 \times 8}{2 \times 1}=36$
Calculator: Calculate ${ }^{9} C_{2}$.

9 SHIFT $\mathrm{nCr} 2=36$
Therefore, there are 36 possible committees.
Now work out how many of these committees have 1 woman or 2 women.
Consider the 2 possibilities:
How many ways can you pick one man from 4 men and 1 woman from 5 women?


OR

${ }^{4} C_{0} \times{ }^{5} C_{2}=1 \times 10=10$
Note: OR means add.
Therefore, the number of committees with 1 woman or 2 women $=20+10=30$

$$
\begin{equation*}
p(E)=\frac{\text { Number of desired outcomes }}{\text { Total possible number of outcomes }} \tag{4}
\end{equation*}
$$

$p(1$ woman or 2 woman $)=\frac{\text { No. of committees with } 1 \text { or } 2 \text { women }}{\text { No. of committees }}=\frac{30}{36}=\frac{5}{6}$

