COUNTING & PROBABILITY (Q 6, PAPER 2)

LESSON NO. 6: PROBABILITY RULES

2001

(a) Sarah and Jim celebrate their birthdays in a particular week (Monday to Sunday 6 inclusive).

Assuming that the birthdays are equally likely to fall on any day of the week, what is the probability that

- (i) Sarah's birthday is on Friday
- (ii) Sarah's birthday and Jim's birthday are both on Friday?

1999

- 6 (c) Twelve blood samples are tested in a laboratory. Of these it is found that five blood samples are of type A, four of type B and the remaining three are of type O. Two blood samples are selected at random from the twelve. What is the probability that
 - (i) the two samples are of type A
 - (ii) one sample is of type B and the other sample is of type O
 - (iii) the two samples are of the same blood type?

1997

6 (c) Two people are chosen at random from a large crowd. Each person names the day of the week on which he or she was born. Assuming that each day is equally likely, what is the probability that

- (i) both people were born on a Friday
- (ii) one person was born on a Tuesday and the other was born on a Thursday

(iii) the two people were born on different days?

1996

- 6 (a) A bag contains 24 beads of which 12 are red, 8 are blue and 4 are white. A bead is taken at random from the bag. What is the probability that the colour of the bead is (i) blue
 - (ii) red or white?

.

Answers			
2001	6 (a) (i) $\frac{1}{7}$	(ii) $\frac{1}{49}$	
1999	6 (c) (i) $\frac{5}{33}$	(ii) $\frac{2}{11}$	(iii) $\frac{19}{66}$
1997	6 (c) (i) $\frac{1}{49}$	(ii) $\frac{2}{49}$	(iii) $\frac{6}{7}$
1996	6 (a) (i) $\frac{1}{3}$	(ii) $\frac{2}{3}$	