COUNTING & PROBABILITY (Q 6, PAPER 2)

LESSON No. 5: SPECIAL PROBABILITY PROBLEMS

2005

- 6 (c) Seven horses run in a race.
 - All horses finish the race and no two horses finish the race at the same time.
 - (i) In how many different orders can the seven horses finish the race?
 - (ii) A person is asked to predict the correct order of the first three horses to finish the race. How many different such predictions can be made?
 - (iii) A person is asked to predict, in any order, the first three horses to finish the race. How many different such predictions can be made?
 - (iv) A person selects two of the seven horses at random. What is the probability that the selected horses are the first two horses to finish the race?

2003

6 (c) In a certain school the examination subjects for senior students are grouped as follows:

Compulsory Subjects	Block A	Block B	Block C
Irish English mathematics	French German	biology home economics construction studies accounting	business organisation history physics

As well as taking all three of the compulsory subjects, each student must choose *one* subject from Block A, *two* from Block B and *one* from Block C.

- (i) In choosing two subjects from Block B, how many different selections are possible?
- (ii) In choosing the full range of subjects, how many different selections are possible?
- (iii) One student has already decided to do German and construction studies. How many different selections of the remaining subjects are possible for this student?
- (iv) If the student referred to in part (iii) selects her remaining subjects at random, what is the probability that she will select both biology and physics?

2002

- 6 (b) A meeting is attended by 23 men and 21 women.
 - Of the men, 14 are married and the others are single.
 - Of the women, 8 are married and the others are single.
 - (i) A person is picked at random. What is the probability that the person is a woman?
 - (ii) A person is picked at random. What is the probability that the person is married?
 - (iii) A man is picked at random. What is the probability that he is married?
 - (iv) A woman is picked at random. What is the probability that she is single?

2000

- 6 (b) In a class, there are 15 boys and 13 girls. Four boys wear glasses and three girls wear glasses.
 - A pupil is picked at random from the class.
 - (i) What is the probability that the pupil is a boy?
 - (ii) What is the probability that the pupil wears glasses?
 - (iii) What is the probability that the pupil is a boy who wears glasses?
 - A girl is picked at random from the class.
 - (iv) What is the probability that she wears glasses?

Answers								
2005	6	(c) (i) 5040	(ii) 210	(iii) 35	(iv) $\frac{1}{21}$			
2003	6	(c) (i) 6	(ii) 36	(iii) 9	(iv) $\frac{1}{9}$			
2002	6	(b) (i) $\frac{21}{44}$	(ii) $\frac{1}{2}$	(iii) $\frac{14}{23}$	(iv) $\frac{13}{21}$			
2000	6	(b) (i) $\frac{15}{28}$	(ii) $\frac{1}{4}$	(iii) $\frac{1}{7}$	(iv) $\frac{3}{13}$			