Counting \& Probability (Q 6, Paper 2)

Lesson No. 1: Combinations

2006

6 (a) Evaluate $5\binom{8}{3}-4\binom{8}{4}$.

2005

6 (a) (ii) Evaluate $\binom{12}{3}$.

2004

6 (b) A committee of 3 people is selected from a group of 15 doctors and 12 dentists. In how many different ways can the 3 people be selected
(i) if there are no restrictions
(ii) if the selection must contain exactly 2 doctors
(iii) if the selection must contain at least 1 doctor and at least 1 dentist
(iv) if the selection must contain one specific doctor and one specific dentist?

2002

6 (a) There are eight questions on an examination paper.
(i) In how many different ways can a candidate select six questions?
(ii) In how many different ways can a candidate select six questions if one particular question must always be selected?

2001

6 (c) (i) Eight points lie on a circle, as in the diagram.
How many different lines can be drawn by joining any two of the eight points?
(ii) Find the value of the natural number n such that

$$
\binom{n}{2}=105 .
$$

[Note: $\binom{n}{2}$ may also be written as ${ }^{n} C_{2}$.]

1999

6 (a) (i) In how many ways can a team of 5 players be chosen from a panel of 8 players?
(ii) If a certain player must be on the team, in how many ways can the team be then chosen.

1998

6 (b) A committee of 4 people is to be formed from a group of 7 men and 6 women.
(i) How many different committees can be formed?
(ii) On how many of these committees is there an equal number of men and of women?

1997

6 (a) A class of 29 students wins a prize. Two members of the class are chosen to receive the prize. How many different pairs of students can be chosen?

```
Answers
2006 6 (a) 0
2005 6 (a) (ii) 220
2004 6 (b) (i) 2,925
(ii) 1,260
(iii) 2,250
(iv) }2
2002 6 (a) (i) 28
(ii) }2
2001 6 (c) (i) 28
(ii) }1
19996 (a) (i) 56
(ii) }3
1998 6 (b) (i) 715
(ii)}31
1997 6 (a) 406
```

