LINEAR PROGRAMMING (Q 11, PAPER 2)

LESSON NO. 3: PRACTICAL LINEAR PROGRAMMING PROBLEMS

2007 11 (b) 4 1 1 1	A deve Each co accom The oth maxim	developer is planning a holiday complex of cottages and apartments. ach cottage will accommodate 3 adults and 5 children and each apartment will commodate 2 adults and 2 children. he other facilities in the complex are designed for a maximum of 60 adults and a maximum of 80 children.						
((i) Ta do	king x wn two	as the number o inequalities in	of cottages and x and y and ill	y as the numbe ustrate these on	er of apar n graph p	tments, write aper.	
((ii) If ho po	ii) If the rental income per night will be €65 for a cottage and €40 for an apartment, how many of each should the developer include in the complex to maximise potential rental income?						
((iii) If ap mi	the con artmen nimise	struction costs t, how many of construction c	are €200 000 fe f each should th costs?	or a cottage and e developer inc	1€120 00 clude in t	00 for an he complex to	
SOLUTION	N							
11 (b)	MAXIMISING AND MINIMISING PROBLEMS							
	 STEPS 1. Choose two variables <i>x</i> and <i>y</i> to represent two different quantities. 2. Draw up a table with restrictions and form the inequalities. 3. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. 4. Find the vertices of the region by solving the equations of the lines simultaneously. 5. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function. 							
1 . Let <i>x</i> = Let <i>y</i> =	= Num = Num	ber of c ber of a	cottages apartments					
2.			Cottages	Apartments	Restriction			
	Adul	ts	3 <i>x</i>	2v	60			
				~				

Adults inequality: $3x + 2y \le 60$

Children

Children inequality: $5x + 2y \le 80$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

2y

80

5*x*

Graph $3x + 2y \le 60$. Draw the line 3x + 2y = 60. Call it *K*. Intercepts: (0, 30), (20, 0). Test with $(0, 0) \Rightarrow 3(0) + 2(0) = 0 \le 60$. This is true. Shade the side of the line that contains (0, 0).

Graph $5x + 2y \le 80$. Draw the line 5x + 2y = 80. Call it *L*. Intercepts: (0, 40), (16, 0). Test with (0, 0) $\Rightarrow 5(0) + 2(0) = 0 \le 80$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 30) and (16, 0).

The only one you need to work out simultaneously is where the lines *K* and *L* intersect.

$$3x + 2y = 60...(1)$$

$$5x + 2y = 80...(2) (\times -1)$$

$$3x + 2y = 60$$

$$-5x - 2y = -80$$

$$-2x = -20 \Rightarrow x = 10$$

Substitute x = 10 back into Eqn. (1).

 $\Rightarrow 3(10) + 2y = 60 \Rightarrow 2y = 30 \Rightarrow y = 15$

Therefore (10, 15) is the final vertex of the region.

5. Rental income = 65x + 40y is the function to be minimised.

	65x + 40y	Income
(0, 0)	65(0) + 40(0)	€0
(0, 30)	65(0) + 40(30)	€1200
(10, 15)	65(10) + 40(15)	€1250
(16, 0)	65(16) + 40(0)	€1040

Therefore, 10 cottages and 15 apartments give the maximum rental income.

Construction costs = 200000x + 120000y is the function to be minimised.

	200000x + 120000y	Cost
(0, 0)	200000(0) + 120000(0)	€0
(0, 30)	200000(0) + 120000(30)	€3,600,000
(10, 15)	20000(10) + 120000(15)	€3,800,000
(16, 0)	200000(16) + 120000(0)	€3,200,000

Therefore, 16 cottages and 0 apartments give the minimum construction costs.

2006 11 (b)	Due to a transport disruption, a bus company is contracted at short notice to carry up to 1500 passengers to complete their journey. Passengers not carried by this company will be carried by a taxi company.					
	The bus comp carries 60 pass	any has available sengers and each	standard buse mini-bus carr	es and mini-bu ies 30 passeng	uses. Each standard bus ers.	
	Each bus is op	erated by one dri	ver and there	are at most 30	drivers available.	
	(i) Taking <i>x</i> a write dow	as the number of n two inequalitie	standard buse as in x and y and	s and y as the and illustrate th	number of mini-buses, em on graph paper.	
	(ii) The opera minibus. I the profit	ating profit for the How many of eac ?	e journey is €8 ch type of bus	30 for a standa should be use	rd bus and €50 for a d in order to maximise	
	(iii) If the bus operating decrease t	company paid ea profit for each bu	ich driver a bo us would be re ofit available t	onus for workin educed by €30 o the company	ng at short notice, the . By how much would this	
Soluti	ON	F		J		
11 (b)	1 (b) MAXIMISING AND MINIMISING PROBLEMS					
 STEPS 1. Choose two variables <i>x</i> and <i>y</i> to represent two different quantities. 2. Draw up a table with restrictions and form the inequalities. 3. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. 4. Find the vertices of the region by solving the equations of the lines simultaneously. 5. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function. 						
1. Let x = Number of standard buses Let y = Number of mini-buses						
2.		Standard buses	Mini-huses	Restriction		
	Passengers	60x	30v	1500		
	Drivers	x	y y	30		
Pass	sengers inequal	lity: $60x + 30y \le$	$1500 \Rightarrow 2x + 2$	y ≤ 50		

Drivers inequality: $x + y \le 30$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

3. Plot the four inequalities.

Graph $2x + y \le 50$. Draw the line 2x + y = 50. Call it *K*.

Intercepts: (0, 50), (25, 0). Test with $(0, 0) \Rightarrow 2(0) + (0) = 0 \le 50$. This is true. Shade the side of the line that contains (0, 0).

Graph $x + y \le 30$. Draw the line x + y = 30. Call it *L*. Intercepts: (0, 30), (30, 0). Test with $(0, 0) \Rightarrow (0) + (0) = 0 \le 30$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 30) and (25, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

$$2x + y = 50...(1)$$

$$x + y = 30...(2) (\times -1)$$

$$2x + y = 50$$

$$-x - y = -30$$

$$x = 20$$

Substitute x = 20 back into Eqn. (2).

 \Rightarrow (20) + y = 30 \Rightarrow y = 10

Therefore (20, 10) is the final vertex of the region.

5. Profit = 80x + 50y is the function to be maximised.

	80x + 50y	Profit
(0, 0)	80(0) + 50(0)	€0
(0, 30)	80(0) + 50(30)	€1500
(20, 10)	80(20) + 50(10)	€2100
(25, 0)	80(25) + 50(0)	€2000

Therefore, 20 standard buses and 10 mini-buses give the maximum profit.

Answers

11 (b) (i) $x + y \le 30, \ 2x + y \le 50$

11 (b) (ii) x = 20, y = 10

Profit = 50x + 20y is the function to be maximised now that the operating profit for each bus is reduced by $\notin 30$.

	50x + 20y	Profit
(0, 0)	50(0) + 20(0)	€0
(0, 30)	50(0) + 20(30)	€600
(20, 10)	50(20) + 20(10)	€1200
(25, 0)	50(25) + 20(0)	€1250

The maximum profit would now be for 25 standard buses and 0 mini-buses. Therefore, the decrease in profit would $\notin 2100 - \notin 1250 = \notin 850$

2005 11 (b)	A manufacturer of garden furniture produces plastic chairs and tables. Each chair requires 2 kg of raw material and each table requires 5 kg of raw material. In any working period the raw material used cannot exceed 800 kg.						
	Eacl mac min	h chair requi hine time. T utes.	res 4 minute he total mac	s of machine tin hine time availa	ne and each tab ble in any wor	ole requin king peri	res 4 minutes of od is 1000
	(i)	Taking <i>x</i> as inequalities	the number in <i>x</i> and <i>y</i> and	of chairs and y and illustrate thes	as the number of se on graph pap	of tables, ber.	write down two
	(ii)	The manufa How many o income?	cturer sells o of each shou	each chair for €2 ld be produced	20 and each tab in each workin	le for €4 g period	0. to maximise
	(iii)	The manufa Express the maximised.	cturer's cost profit as a p	s for each chair ercentage of inc	are €17 and fo come, assuming	r each ta g the inco	ble are €34.70. ome has been
Soluti	ON						
11 (b)		MAXIMISING .	and Minimisin	G PROBLEMS			
	 STEPS Choose two variables <i>x</i> and <i>y</i> to represent two different quantities. Draw up a table with restrictions and form the inequalities. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. Find the vertices of the region by solving the equations of the lines simultaneously. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function. 						
1 . Let :	1. Let $x = $ Number of chairs						
Let $y =$ Number of tables							
2							
<i>L</i> .			Chairs	Tables	Restriction		
	Ra	Raw material $2x$ $5y$ 800 Time $4y$ 1000					
	Time $4x$ $4y$ 1000						
Raw	mate	rial inequali	ty: $2x + 5y \le $	≤800			
Tim	Time inequality: $4x + 4y \le 1000 \Rightarrow x + y \le 250$						
As a	As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.						

Graph $2x + 5y \le 800$. Draw the line 2x + 5y = 800. Call it *K*. Intercepts: (0, 160), (400, 0). Test with $(0, 0) \Rightarrow 2(0) + 5(0) = 0 \le 800$. This is true. Shade the side of the line that contains (0, 0).

Graph $x + y \le 250$. Draw the line x + y = 250. Call it *L*. Intercepts: (0, 250), (250, 0). Test with $(0, 0) \Rightarrow (0) + (0) = 0 \le 250$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 160) and (250, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

$$2x + 5y = 800...(1)$$

$$x + y = 250...(2) (\times -2)$$

$$2x + 5y = 800$$

$$-2x - 2y = -500$$

$$3y = 300 \Rightarrow y = 100$$

Substitute y = 100 back into Eqn. (2).

 $\Rightarrow x + (100) = 250 \Rightarrow x = 250 - 100 = 150$

Therefore (150, 100) is the final vertex of the region.

5. Income = 20x + 40y is the function to be minimised.

	20x + 40y	Income
(0, 0)	20(0) + 40(0)	€0
(0, 160)	20(0) + 40(160)	€6400
(150, 100)	20(150) + 40(100)	€7000
(250, 0)	20(250) + 40(0)	€5000

Therefore, 150 chairs and 100 tables give the maximum income.

11 (b) (i) $2x + 5y \le 800$, $x + y \le 250$ 11 (b) (ii) x = 150, y = 10011 (b) (iii) Manufacturing costs $= 150 \times €17 + 100 \times €34.70 = €6020$ Profit = €7000 - €6020 = €980Profit as a percentage of income $= \frac{€980}{€7000} \times 100\% = 14\%$

2004 11 (b)	A shop-owner displays videos and DVDs in his shop. Each video requires 720 cm ³ of display space and each DVD requires 360 cm ³ of display space. The available display space cannot exceed 108 000 cm ³ . The shopowner buys each video for €6 and each DVD for €8. He does not wish to spend more than €1200.						
	(i) Taking x two inequ	as the number valities in x and	of videos and y l y and illustrate	as the number e these on grap	of DVDs h paper.	s, write down	
	During a €10. Assu	DVD promotion in the state of t	on the selling pr shop-owner can	rice of a video is sell all the vid	is €11 and leos and I	d of a DVD is DVDs,	
	(ii) how man	y of each type	should he displa	ay in order to n	naximise	his income?	
Solutio	(iii) how man	y of each type	should he displa	ay in order to n	naximise	his profit?	
11 (b)	MAXIMISI	NG AND MINIMISIN	G PROBLEMS				
	 STEPS 1. Choose two variables <i>x</i> and <i>y</i> to represent two different quantities. 2. Draw up a table with restrictions and form the inequalities. 3. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. 4. Find the vertices of the region by solving the equations of the lines simultaneously. 5. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function. 						
1. Let $x =$ Number of videos Let $y =$ Number of DVDs							
2.		Videos	DVDs	Restriction	1		
	Space Cost	720 <i>x</i> 6 <i>x</i>	360y 8y	108,000 1200			
Spac Cost	Space inequality: $720x + 360y \le 108000 \Rightarrow 2x + y \le 300$ Cost inequality: $6x + 8y \le 1200 \Rightarrow 3x + 4y \le 600$						

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

3. Plot the four inequalities.

Graph $2x + y \le 300$. Draw the line 2x + y = 300. Call it *K*. Intercepts: (0, 300), (150, 0). Test with (0, 0) $\Rightarrow 2(0) + (0) = 0 \le 300$. This is true. Shade the side of the line that contains (0, 0).

Graph $3x + 4y \le 600$. Draw the line 3x + 4y = 600. Call it *L*. Intercepts: (0, 150), (200, 0). Test with (0, 0) $\Rightarrow 3(0) + 4(0) = 0 \le 600$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 150) and (150, 0).

The only one you need to work out simultaneously is where the lines *K* and *L* intersect.

$$2x + y = 300...(1) (x - 4)$$

$$3x + 4y = 600...(2)$$

$$-8x - 4y = -1200$$

$$3x + 4y = 600$$

$$-5x = -600 \Rightarrow x = 120$$

Substitute x = 120 back into Eqn. (1).

 $\Rightarrow 2(120) + y = 300 \Rightarrow y = 300 - 240 = 60$

Therefore (120, 60) is the final vertex of the region.

5. Income = 11x + 10y is the function to be maximised.

	11x + 10y	Income
(0, 0)	11(0) + 10(0)	€0
(0, 150)	11(0) + 10(150)	€1500
(120, 60)	11(120) + 10(60)	€1920
(150, 0)	11(150) + 10(0)	€1650

Therefore, 120 videos and 60 DVDs give the maximum income.

Answers

11 (b) (i) $2x + y \le 300$, $3x + 4y \le 600$ **11 (b) (ii)** x = 120, y = 60

11 (b) (iii)

Profit on videos = $\notin 11 - \notin 6 = \notin 5$ Profit on DVDs = $\notin 10 - \notin 8 = \notin 2$

Profit = 5x + 3y is the function to be maximised.

	5x + 2y	Income
(0, 0)	5(0) + 2(0)	€0
(0, 150)	5(0) + 2(150)	€300
(120, 60)	5(120) + 2(60)	€720
(150, 0)	5(150) + 2(0)	€750

Therefore, 150 videos and 0 DVDs will maximise profit.

2003

- 11 (b) A developer is planning a scheme of holiday homes, consisting of large and small bungalows. Each large bungalow will accommodate 8 people and each small bungalow will accommodate 6 people. The development is not permitted to accommodate more than 216 people. The floor area of each large bungalow is 200 m² and the floor area of each small bungalow is 100 m². The total floor area of all the bungalows must not exceed 4000 m².
 - (i) Taking *x* as the number of large bungalows and *y* as the number of small bungalows, write down two inequalities in *x* and *y* and illustrate these on graph paper.
 - (ii) The expected net annual income from each large bungalow is €14 000 and from each small bungalow is €8000. How many of each type should be built in order to maximise the total expected net annual income?
 - (iii) The developer decides to build as indicated in part (ii). The cost of building each large bungalow is €110 000 and the cost of building each small bungalow is €85 000. The total cost of the development is equal to the building costs plus €1.58 million. How many years will it take to recoup the total cost of the development?

SOLUTION

11 (b)

MAXIMISING AND MINIMISING PROBLEMS

STEPS

- **1**. Choose two variables *x* and *y* to represent two different quantities.
- **2**. Draw up a table with restrictions and form the inequalities.
- **3**. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities.
- **4**. Find the vertices of the region by solving the equations of the lines simultaneously.
- **5**. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function.
- 1. Let *x* = Number of large bungalows Let *y* = Number of small bungalows
- 2.

	Large bungalows	Small bungalows	Restriction
Accommodation	8 <i>x</i>	бу	216
Floor Space	200 <i>x</i>	100y	4000

Accommodation inequality: $8x + 6y \le 216 \Rightarrow 4x + 3y \le 108$

Floor space inequality: $200x + 100y \le 4000 \Rightarrow 2x + y \le 40$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

Graph $4x + 3y \le 108$. Draw the line 4x + 3y = 108. Call it *K*. Intercepts: (0, 36), (27, 0). Test with (0, 0) $\Rightarrow 4(0) + 3(0) = 0 \le 108$. This is true. Shade the side of the line that contains (0, 0).

Graph $2x + y \le 40$. Draw the line 2x + y = 40. Call it *L*. Intercepts: (0, 40), (20, 0). Test with (0, 0) $\Rightarrow 2(0) + (0) = 0 \le 40$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 36) and (20, 0).

The only one you need to work out simultaneously is where the lines *K* and *L* intersect.

$$4x+3y=108...(1)$$

 $2x+y = 40....(2) (x-3)$

$$4x + 3y = 108$$

$$-6x - 3y = -120$$

$$-2x = -12 \Longrightarrow x = 6$$

Substitute x = 6 back into Eqn. (2).

 \Rightarrow 2(6) + y = 40 \Rightarrow y = 40 - 12 = 28

Therefore (6, 28) is the final vertex of the region.

5. Income = 14000x + 8000y is the function to be maximised.

	14000x + 8000y	Income
(0, 0)	14000(0) + 8000(0)	€0
(0, 36)	14000(0) + 8000(36)	€288,000
(6, 28)	14000(6) + 8000(28)	€308,000
(20, 0)	14000(20) + 8000(0)	€280,000

Therefore, 6 large bungalows and 28 small bungalows give the maximum rental income.

Answers

11 (b) (i) $4x + 3y \le 108$, $2x + y \le 40$

11 (b) (ii) *x* = 6, *y* = 28

11 (b) (iii)

Cost of development = 6×€110000 + 28×€85000 + €1580000 = €4,620,000

No. of years $= \frac{\notin 4,620,000}{\notin 308,000} = 15$

2002

11 (b) A new ship is being designed. It can have two types of cabin accommodation for passengers — type A cabins and type B cabins.

Each type A cabin accommodates 6 passengers and each type B cabin accommodates 3 passengers. The maximum number of passengers that the ship can accommodate is 330.

Each type A cabin occupies 50 m³ of floor space. Each type B cabin occupies 10 m³ of floor space. The total amount of floor space occupied by cabins cannot exceed 2300 m^3 .

- (i) Taking *x* to represent the number of type A cabins and *y* to represent the number of type B cabins, write down two inequalities in *x* and *y* and illustrate these on graph paper.
- (ii) The income on each voyage from renting the cabins to passengers is €600 for each type A cabin and €180 for each type B cabin. How many of each type of cabin should the ship have so as to maximise income, assuming that all cabins are rented?
- (iii) What is the maximum possible income on each voyage from renting the cabins?

SOLUTION 11 (b)

MAXIMISING AND MINIMISING PROBLEMS

STEPS Choose two variables *x* and *y* to represent two different quantities. Draw up a table with restrictions and form the inequalities. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. Find the vertices of the region by solving the equations of the lines simultaneously. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function.

1. Let x = Number of Type A cabins

Let y = Number of Type B cabins

-	
1	
_	٠

	Type A	Type B	Restriction
Accommodation	6 <i>x</i>	3у	330
Floor space	50x	10y	2300

Accommodation inequality: $6x + 3y \le 330 \Rightarrow 2x + y \le 110$

Floor space inequality: $50x + 10y \le 2300 \Longrightarrow 5x + y \le 230$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

3. Plot the four inequalities.

Graph $2x + y \le 110$. Draw the line 2x + y = 110. Call it *K*.

Intercepts: (0, 110), (55, 0). Test with $(0, 0) \Rightarrow 2(0) + (0) = 0 \le 110$. This is true.

Shade the side of the line that contains (0, 0).

Graph $5x + y \le 230$. Draw the line 5x + y = 230. Call it *L*.

Intercepts: (0, 230), (46, 0). Test with (0, 0) $\Rightarrow 5(0) + (0) = 0 \le 230$.

This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 110) and (46, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

$$2x + y = 110...(1) (x - 1)$$

$$5x + y = 230...(2)$$

$$-2x - y = -110$$

$$5x + y = 230$$

$$3x = 120 \Rightarrow x = 40$$

Substitute x = 40 back into Eqn. (1).

 \Rightarrow 2(40) + y = 110 \Rightarrow y = 110 - 80 = 30

Therefore (40, 30) is the final vertex of the region.

5. Income = 600x + 180y is the function to be maximised.

	600x + 180y	Income
(0, 0)	600(0) + 180(0)	€0
(0, 110)	600(0) + 180(110)	€19,800
(40, 30)	600(40) + 180(30)	€29,400
(46, 0)	600(46) + 180(0)	€27,600

Therefore, 40 type A cabins and 30 type B cabins give the maximum rental income.

Answers

11 (b) (i) $2x + y \le 110$, $5x + y \le 230$ **11 (b) (ii)** x = 40, y = 30**11 (b) (iii)** \notin 29,400

2001 11 (b)	Houses are to Two types of h	be built on 9 he houses, bungalo	ectares of land. ws and semi-de	etached houses,	are possible.		
	Each bungalow occupies one fifth of a hectare. Each semi-detached house occupies one tenth of a hectare.						
	The cost of bu The cost of bu The total cost	ilding a bungal- ilding a semi-d of building the	ow is IR£80 00 etached house i houses cannot b	0. s IR£50 000. be greater than	IR£4 million.		
	(i) Taking x t semi-deta on graph j	o represent the ched houses, w paper.	number of bun rite down two i	galows and y to nequalities in x	represent the number of and y and illustrate these		
	(ii) The profit house is I maximise	on each bunga R£7000. How r profit?	low is IR£10 00 nany of each ty	00. The profit o pe of house sho	n each semi-detached ould be built so as to		
SOLUTIO 11 (b))N Maximisin	G AND MINIMISING	PROBLEMS				
1 . Let <i>x</i> Let <i>y</i>	 Choose two variables <i>x</i> and <i>y</i> to represent two different quantities. Draw up a table with restrictions and form the inequalities. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. Find the vertices of the region by solving the equations of the lines simultaneously. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function. Let <i>x</i> = Number of bungalows Let <i>y</i> = Number of semi-detached houses 						
2.		Bungalows	Houses	Restriction			
	Space Cost	$\frac{\frac{1}{5}x}{80000x}$	$\frac{1}{10} y$ 50000y	9 4000000			
Space inequality: $\frac{1}{5}x + \frac{1}{10}y \le 9 \Rightarrow 2x + y \le 90$ Cost inequality: $80000x + 50000y \le 4000000 \Rightarrow 8x + 5y \le 400$ As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$. 3. Plot the four inequalities. Graph $2x + y \le 90$. Draw the line $2x + y = 90$. Call it <i>K</i> . Intercepts: $(0, 90)$, $(45, 0)$. Test with $(0, 0) \Rightarrow 2(0) + (0) = 0 \le 90$. This is true. Shade the side of the line that contains $(0, 0)$. Graph $8x + 5y \le 400$. Draw the line $8x + 5y = 400$. Call it <i>L</i> . Intercepts: $(0, 80)$, $(50, 0)$. Test with $(0, 0) \Rightarrow 8(0) + 5(0) = 0 \le 400$.							
This	is true. Shade t	he side of the li	ne that contains	s (0, 0).	Солт		

٦

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 80) and (45, 0).

The only one you need to work out simultaneously is where the lines *K* and *L* intersect.

2x + y = 90(1) (x - 4)	-8x - 4y = -360
8x + 5y = 400(2)	8x + 5y = 400
	v = 40

Substitute y = 40 back into Eqn. (1).

 $\Rightarrow 2x + (40) = 90 \Rightarrow 2x = 50 \Rightarrow x = 25$

Therefore (25, 40) is the final vertex of the region.

5. Profit = 10000x + 7000y is the function to be maximised.

	10000x + 7000y	Income
(0, 0)	10000(0) + 7000(0)	€0
(0, 80)	10000(0) + 7000(80)	€560,000
(25, 40)	10000(25) + 7000(40)	€530,000
(45, 0)	10000(45) + 7000(0)	€450,000

Therefore, 0 bungalows and 80 semi-detached houses give the maximum profit.

Answers

11 (b) (i) $2x + y \le 90, 8x + 5y \le 400$

11 (b) (ii) x = 0, y = 80

2000 11 (b)	Two types of machines, type A and type B, can be purchased for a new factory. Each machine of type A costs IR£1600. Each machine of type B costs IR£800. The purchase of the machines can cost, at most, IR£27,200.					
	Each machine Each machine	of type A need of type B need	ls 90 m ² of floo ls 54 m ² of floo	r space in the fa r space.	actory.	
	The maximun	n amount of flo	oor space availa	ble for the mac	hines is 1620 m ² .	
	(i) If <i>x</i> repress of machin these on g	sents the numb nes of type B, v graph paper.	er of machines write down two	of type A and y inequalities in	y represents the number x and y and illustrate	
	(ii) The daily income fr of each ty	income from to rom the use of or pe of machine	he use of each n each machine o should be purc	machine of type f type B machin hased so as to 1	e A is IR£75. The daily ne is IR£42. How many maximise daily income?	
	(iii) What is th	ne maximum d	aily income?			
Solutio 11 (b)	ON Maximisii	ng and Minimisin	G PROBLEMS			
	 STEPS 1. Choose two variables <i>x</i> and <i>y</i> to represent two different quantities. 2. Draw up a table with restrictions and form the inequalities. 3. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. 4. Find the vertices of the region by solving the equations of the lines simultaneously. 5. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function. 					
 Let x = Number of type A machines Let y = Number of type B machines 						
2.		Type A	Type B	Restriction		
	Cost Floor space	1600x 90x	800y 54y	27200 1620		
Cost	Cost inequality: $1600x + 800y \le 27200 \Longrightarrow 2x + y \le 34$					

Floor space inequality: $90x + 54y \le 1620 \Longrightarrow 5x + 3y \le 90$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

Graph $2x + y \le 34$. Draw the line 2x + y = 34. Call it *K*. Intercepts: (0, 34), (17, 0). Test with (0, 0) $\Rightarrow 2(0) + (0) = 0 \le 34$. This is true. Shade the side of the line that contains (0, 0).

Graph $5x + 3y \le 90$. Draw the line 5x + 3y = 90. Call it *L*.

Intercepts: (0, 30), (18, 0). Test with $(0, 0) \Rightarrow 5(0) + 3(0) = 0 \le 90$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 30) and (17, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

$$2x + y = 34...(1) (x - 3)$$

 $5x + 3y = 90...(2)$

$$-6x - 3y = -102$$

$$5x + 3y = 90$$

$$-x = -12 \Longrightarrow x = 12$$

Substitute x = 12 back into Eqn. (1).

 $\Rightarrow 2(12) + y = 34 \Rightarrow y = 34 - 24 = 10$

Therefore (12, 10) is the final vertex of the region.

5. Income = 75x + 42y is the function to be maximised.

	75x + 42y	Income
(0, 0)	75(0) + 42(0)	€0
(0, 30)	75(0) + 42(30)	€1260
(12, 10)	75(12) + 42(10)	€1320
(17, 0)	75(17) + 42(0)	€1275

Therefore, 12 type A machines and 10 type B machines give the maximum income.

Answers

11 (b) (i) $2x + y \le 34$, $5x + 3y \le 90$ **11 (b) (ii)** A = 12, B = 10**11 (b) (iii)** £1320

1999

11 (b) A company uses small trucks and large trucks to transport its products in crates. The crates are all of the same size.

On a certain day 10 truck drivers at most are available. Each truck requires one driver only.

Small trucks take 10 minutes each to load and large trucks take 30 minutes each to load. The total loading time must not be more than 3 hours. Only one truck can be loaded at a time.

(i) If *x* represents the number of small trucks used and *y* represents the number of large trucks used, write down two inequalities in *x* and *y*.

Illustrate these on graph paper.

(ii) Each small truck carries 30 crates and each large truck carries 70 crates. How many of each type of truck should be used to maximize the number of crates to be transported that day?

SOLUTION

11 (b)

MAXIMISING AND MINIMISING PROBLEMS

- STEPS
 1. Choose two variables *x* and *y* to represent two different quantities.
 2. Draw up a table with restrictions and form the inequalities.
 3. Plot the lines in the same diagrams and shade the region satisfied by
 - all the inequalities.
- **4**. Find the vertices of the region by solving the equations of the lines simultaneously.
- **5**. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function.
- 1. Let *x* = Number of small trucks Let *y* = Number of large trucks
- 2.

	Small trucks	Large trucks	Restriction
Drivers	x	У	10
Loading time	10x	30y	180

Drivers inequality: $x + y \le 10$

Loading time inequality: $10x + 30y \le 180 \Rightarrow x + 3y \le 18$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

3. Plot the four inequalities.

Graph $x + y \le 10$. Draw the line x + y = 10. Call it *K*.

Intercepts: (0, 10), (10, 0). Test with $(0, 0) \Rightarrow (0) + (0) = 0 \le 10$. This is true. Shade the side of the line that contains (0, 0).

Graph $x + 3y \le 18$. Draw the line x + 3y = 18. Call it *L*. Intercepts: (0, 6), (18, 0). Test with $(0, 0) \Rightarrow (0) + 3(0) = 0 \le 18$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 6) and (10, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

$$x + y = 10...(1) (x - 1)$$

 $x + 3y = 18...(2)$

$$-x - y = -10$$

$$x + 3y = 18$$

$$2y = 8 \Longrightarrow y = 4$$

Substitute y = 4 back into Eqn. (1).

 $\Rightarrow x + (4) = 10 \Rightarrow x = 6$

Therefore (6, 4) is the final vertex of the region.

5. Crates cargo = 30x + 70y is the function to be maximised.

	30x + 70y	Cargo
(0, 0)	30(0) + 70(0)	0
(0, 6)	30(0) + 70(6)	420
(6, 4)	30(6) + 70(4)	460
(10, 0)	30(10) + 70(0)	300

Therefore, 6 small trucks and 4 large trucks give the maximum cargo.

Answers:

11 (b) (i) $x + y \le 10$, $x + 3y \le 18$ **11 (b) (ii)** x = 6, y = 4

1998 11 (b)	A company pr	oduces two pr	oducts, A and B				
	Each unit of the two products must be processed on two assembly lines, the red line and the blue line, for a certain length of time.						
	Each unit of A Each unit of E	A requires 3 ho 3 requires 1 ho	urs on the red li ur on the red lin	ne and 1 hour one and 2 hours of the second se	on the blue line. on the blue line.		
	Each week, th maximum tim	e maximum ti e available on	me available on the blue line is	the red line is 40 hours.	60 hours and the		
	(i) If <i>x</i> represented the numb <i>x</i> and <i>y</i> . If	sents the numb er of units of H llustrate these of	per of units of A B produced in a on graph paper.	produced in a week, write do	week and y repress wn two inequalitie	ents es in	
	(ii) The profi How man maximise	t made on each y units of each the profit?	n unit of A is tw n product must b	ice the profit m be manufacture	ade on each unit o d in a week so as t	of B. to	
	(iii) If the max profit ma	ximum profit t de on each uni	hat can be made t of A and on ea	e in a week is II ch unit of B.	R£1980, calculate	the	
Soluti	ION						
11 (b)	Maximisi	ng and Minimisin	G PROBLEMS				
	 STEPS 1. Choose two variables <i>x</i> and <i>y</i> to represent two different quantities. 2. Draw up a table with restrictions and form the inequalities. 3. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. 4. Find the vertices of the region by solving the equations of the lines simultaneously. 5. Maximise or minimise the given functions by substituting the negative of the coefficient of the function. 						
1. Let Let	x = Number of $y =$ Number of y = Number of $y =$ Number of y = Number of	units of A units of B					
2.		Δ	р	Destriction			
	Red line	A 2r		60			
	Blue line	x	$\frac{y}{2v}$	40			
D _a 1	line ine swelit-	2	-,				
Red	line inequality:	$5x + y \le 60$					
Blue	Blue line inequality: $x + 2y \le 40$						
As a	uways, there are	e two inequalit	ies that are obvi	ious: $x \ge 0$ and	$y \ge 0.$		
3. Plot	the four inequa	lities.					
Graph $3x + y \le 60$. Draw the line $3x + y = 60$. Call it <i>K</i> .							

Intercepts: (0, 60), (20, 0). Test with $(0, 0) \Rightarrow 3(0) + (0) = 0 \le 60$. This is true.

Shade the side of the line that contains (0, 0).

Солт.....

Graph $x + 2y \le 40$. Draw the line x + 2y = 40. Call it *L*. Intercepts: (0, 20), (40, 0). Test with (0, 0) \Rightarrow (0) + 2(0) = 0 \le 40. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 20) and (20, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

3x + y = 60...(1) (x-2) x + 2y = 40...(2) -6x - 2y = -120 x + 2y = 40 $-5x = -80 \Rightarrow x = 16$

Substitute x = 16 back into Eqn. (2).

 \Rightarrow (16) + 2y = 40 \Rightarrow 2y = 24 \Rightarrow y = 12

Therefore (16, 12) is the final vertex of the region.

5. Profit = 2x + y is the function to be maximised.

2x + y	Profit
2(0) + (0)	0
2(0) + (20)	20
2(16) + (12)	44
2(20) + (0)	40
	$ \begin{array}{r} 2x + y \\ 2(0) + (0) \\ 2(0) + (20) \\ 2(16) + (12) \\ 2(20) + (0) \end{array} $

Therefore, 16 units of A and 12 units of B give the maximum profit.

Answers:

11 (b) (i) $3x + y \le 60$, $x + 2y \le 40$ **11 (b) (ii)** 16 of A and 12 of B

11 (b) (iii)

A profit of £44 was generated from producing 16 units of A and 12 units of B using the fact that £2 profit was made of each unit of A against £1 profit for each unit of B.

Profit on each unit of B = $\frac{\pounds 1980}{44} = \pounds 45$ Profit on each unit of A = $\pounds 90$

1997 11 (b)) A factory, which manufactures television sets makes two types of set - a wide screen model and a standard model.				
	In any wee	k, 500 sets at mos	st can be manufa	actured.	
	Each wide screen model costs IR£200 to produce. Each standard model costs IR£150 to produce. Total weekly production costs must not be greater than IR£90,000.				
	(i) If the factory manufactures <i>x</i> of the wide screen model and <i>y</i> of the standard model, write down two inequalities in <i>x</i> and <i>y</i> and illustrate these on graph paper.				
	 (ii) If the profit on a wide screen model is IR£100 and the profit on a standard model is IR£70, how many of each type of set should be manufactured in order to manufacture in order 				profit on a standard be manufactured in order
Solution 11 (b)	ON MAXIN	ISING AND MINIMISIN	G PROBLEMS		
 STEPS 1. Choose two variables <i>x</i> and <i>y</i> to represent two different quantities. 2. Draw up a table with restrictions and form the inequalities. 3. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. 4. Find the vertices of the region by solving the equations of the lines simultaneously. 5. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function. 					
 Let x = Number of wide screen models Let y = Number of standard models 					
2.		Wide screen	Standard	Restriction	
	Output Cost	x 200x	y 150y	500 90000	

Output inequality: $x + y \le 500$

Costs inequality: $200x + 150y \le 90000 \Longrightarrow 4x + 3y \le 1800$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

3. Plot the four inequalities.

Graph $x + y \le 500$. Draw the line x + y = 500. Call it *K*.

Intercepts: (0, 500), (500, 0). Test with $(0, 0) \Rightarrow (0) + (0) = 0 \le 500$. This is true. Shade the side of the line that contains (0, 0).

Graph $4x + 3y \le 1800$. Draw the line 4x + 3y = 1800. Call it *L*. Intercepts: (0, 600), (450, 0). Test with (0, 0) $\Rightarrow 4(0) + 3(0) = 0 \le 1800$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 500) and (450, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

x + y = 500(1)	(x-3)
4x + 3y = 1800(2)	

$$-3x - 3y = -1500$$
$$\frac{4x + 3y = 1800}{x = 300}$$

Substitute x = 300 back into Eqn. (1).

 \Rightarrow (300) + y = 500 \Rightarrow y = 200

Therefore (300, 200) is the final vertex of the region.

5. Profit = 100x + 70y is the function to be maximised.

	100x + 70y	Profit
(0, 0)	100(0) + 70(0)	£0
(0, 500)	100(0) + 70(500)	£35,000
(300, 200)	100(300) + 70(200)	£44,000
(450, 0)	100(450) + 70(0)	£45,000

Therefore, 450 wide screen models and 0 standard models give the maximum profit.

Answers

11 (b) (i) $x + y \le 500, 4x + 3y \le 1800$ **11 (b) (ii)** x = 450, y = 0

1996 11 (b)	A property developer wishes to construct a business centre consisting of shops and offices. The floor space required for each shop is 60 m ² and for each office is 20 m ² . The total floor space for the business centre cannot exceed 960 m ² .			
	The construction of each shop takes 5 working days to complete and each office 3 working days to complete. The developer has at most 120 working days to complete the construction.			
	(i)	If the developer constructs <i>x</i> shops and <i>y</i> offices, write two ineq <i>y</i> and illustrate these on graph paper.	ualities in <i>x</i> and	
	 (ii) If the rental charge is IR£200 per m² for a shop and IR£140 per m² for an office, how many of each type should be built so as to maximize the developer's rental income? Find this maximum rental income. 			
	(iii) If each shop provides 7 jobs and each office 3 jobs, write an expression in <i>x</i> and <i>y</i> for the total number of jobs to be provided. How many of each type should be built so as to maximize the number of jobs?			
Solutio	ON			
11 (b)		MAXIMISING AND MINIMISING PROBLEMS		
		 STEPS Choose two variables <i>x</i> and <i>y</i> to represent two different quantities. Draw up a table with restrictions and form the inequalities. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities. Find the vertices of the region by solving the equations of the lines simultaneously. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function. 		
1. Let <i>x</i> Let <i>y</i>	c = N r = N	lumber of shops lumber of offices		

2.

	Shops	Offices	Restriction
Floor space (m ²)	60 <i>x</i>	20y	960
Time (Days)	5x	3у	120

Adults inequality: $60x + 20y \le 960 \Longrightarrow 3x + y \le 48$

Children inequality: $5x + 3y \le 120$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

Сонт.....

Graph $3x + y \le 48$. Draw the line 3x + y = 48. Call it *K*. Intercepts: (0, 48), (16, 0). Test with (0, 0) \Rightarrow 3(0) + (0) = 0 \le 48. This is true. Shade the side of the line that contains (0, 0).

Graph $5x + 3y \le 120$. Draw the line 5x + 3y = 120. Call it *L*.

Intercepts: (0, 40), (24, 0). Test with (0, 0) \Rightarrow 5(0) + 3(0) = 0 ≤ 120. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 40) and (16, 0).

The only one you need to work out simultaneously is where the lines *K* and *L* intersect.

$$3x + y = 48....(1) (x-3)
5x + 3y = 120...(2)
-9x - 3y = -144
5x + 3y = 120
-4x = -24 \Rightarrow x = 6$$

Substitute x = 6 back into Eqn. (1).

 \Rightarrow 3(6) + y = 48 \Rightarrow y = 48 - 18 = 20

Therefore (6, 20) is the final vertex of the region.

5. Rental income = 200x + 140y is the function to be maximised.

	200x + 140y	Income
(0, 0)	200(0) + 140(0)	£0
(0, 40)	200(0) + 140(40)	£5600
(6, 20)	200(6) + 140(20)	£4000
(16, 0)	200(16) + 140(0)	£3200

Therefore, 0 shops and 40 offices give the maximum rental income.

5. No. of jobs = 7x + 3y is the function to be maximised.

	7x + 3y	Jobs
(0, 0)	7(0) + 3(0)	0
(0, 40)	7(0) + 3(40)	120
(6, 20)	7(6) + 3(20)	58
(16, 0)	7(16) + 3(0)	112

Therefore, 0 shops and 40 offices give the maximum number of jobs.