LINEAR PROGRAMMING (Q 11, PAPER 2)

2011

11 (b)							
		STEPS					
		1. Choose two variables x and y to represent two different quantities.					
		2. Draw up a table with restrictions and form the inequalities.					
		3. Plot the lines in the same diagrams and shade the region satisfied by					
	all the inequalities.						
	4. Find the vertices of the region by solving the equations of the lines						
simultaneously.							
5. Maximise or minimise the given functions by substituting the							
coordinates of the vertices into the function.							
1. Let $x =$ Number of small vans Let $y =$ Number of large vans							
2.	Small vans	Large vans	Restriction				
Cost	20000 <i>x</i>	40000y	800000				
Area	18 <i>x</i>	24y	576				
			1				

Cost inequality: $20000x + 40000y \le 800000 \Longrightarrow x + 2y \le 40$

Area inequality: $18x + 24y \le 576 \Longrightarrow 3x + 2y \le 96$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

3. Plot the four inequalities.

Graph $x + 2y \le 40$. Draw the line x + 2y = 40. Call it *k*.

Intercepts: (0, 20), (40, 0). Test with $(0, 0) \Rightarrow 0 + 2(0) = 0 \le 40$. This is true. Shade the side of the line that contains (0, 0).

Graph $3x + 4y \le 96$. Draw the line 3x + 4y = 96. Call it *l*. Intercepts: (0, 24), (32, 0). Test with (0, 0) \Rightarrow 3(0) + 4(0) = 0 \le 96. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 20) and (32, 0).

The only one you need to work out simultaneously is where the lines k and l intersect.

$$x + 2y = 40.....(1)(x-2)$$

$$3x + 4y = 96....(2)$$

$$-2x - 4y = -80$$

$$3x + 4y = 96$$

$$x = 16$$

Substitute y = 15 back into Eqn. (1).

 $(16) + 2y = 40 \Longrightarrow 2y = 24 \Longrightarrow y = 12$

Therefore (16, 12) is the final vertex of the region.

5. Rental Income = 40x + 50y is the function to be maximised.

	40x + 50y	Income
(0,0)	40(0) + 50(0)	€0
(0, 20)	40(0) + 50(20)	€1000
(16, 12)	40(16) + 50(12)	€1240
(32, 0)	40(32) + 50(0)	€1280

Therefore, 32 small vans and 0 large vans give the maximum rental income. The maximum rental income is \notin 1280.

- 11 (b) (i) Graph drawn
- **11 (b) (ii)** 32 small vans and 0 large vans give the maximum rental income.
- **11 (b) (iii)** Maximum rental income is €1280.

Expenses = $32 \times \pounds 12 = \pounds 384$

Maximum daily profit = $\notin 1280 - \notin 384 = \notin 896$