LINEAR PROGRAMMING (Q 11, PAPER 2)

2009

Graph $2x + 3y \le 30$. Draw the line 2x + 3y = 30. Call it *L*. Intercepts: (0, 10), (15, 0). Test with (0, 0) $\Rightarrow 2(0) + 3(0) = 0 \le 30$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 10) and (13, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

$$x + y = 13....(1) (x - 2)$$

$$2x + 3y = 30...(2)$$

$$-2x - 2y = -26$$

$$2x + 3y = 30$$

$$y = 4$$

Substitute y = 4 back into Eqn. (1).

 $\Rightarrow x + (4) = 13 \Rightarrow x = 9$

Therefore (9, 4) is the final vertex of the region.

5. Profit = 800x + 900y is the function to be maximised.

	800x + 900y	Profit
(0, 0)	800(0) + 900(0)	€0
(0, 10)	800(0) + 900(10)	€9000
(9, 4)	800(9) + 900(4)	€10800
(13, 0)	800(13) + 900(0)	€10400

Therefore, 9 medium sized cars and 4 large cars give the maximum profit.

Answers

11 (b) (i) $x + y \le 13, 2x + 3y \le 30$ (ii) x = 9, y = 4

11 (b) (iii)

 $800x + 900y \le 7200 \Longrightarrow 8x + 9y \le 72$

Graph the straight line 8x + 9y = 72.

Intercepts: (0, 8), (9, 0).

Testing with (0, 0) gives a true statement which means you shade the side of the line containing (0, 0)

