LINEAR PROGRAMMING (Q 11, PAPER 2)

2007

11 (a) The line K cuts the x-axis at (-5, 0) and the y-axis at (0, 2). (i) Find the equation of *K*. (0, 2)(ii) Write down the three inequalities that together define the region enclosed by (-5, 0)K, the x-axis and the y-axis. (b) A developer is planning a holiday complex of cottages and apartments. Each cottage will accommodate 3 adults and 5 children and each apartment will accommodate 2 adults and 2 children. The other facilities in the complex are designed for a maximum of 60 adults and a maximum of 80 children. (i) Taking x as the number of cottages and y as the number of apartments, write down two inequalities in x and y and illustrate these on graph paper. (ii) If the rental income per night will be $\notin 65$ for a cottage and $\notin 40$ for an apartment, how many of each should the developer include in the complex to maximise potential rental income? (iii) If the construction costs are €200 000 for a cottage and €120 000 for an apartment, how many of each should the developer include in the complex to minimise construction costs? **SOLUTION** 11 (a) (i) (-5, 0) (0, 2)Slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$ $\downarrow \downarrow \downarrow \downarrow \downarrow$ $x_1 y_1 \quad x_2 y_2$ Equation of a line: $y - y_1 = m(x - x_1)$ 4 Slope $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 0}{0 - (-5)} = \frac{2}{5}$ Equation of line *K*: $y - 0 = \frac{2}{5}(x - (-5)) \implies y = \frac{2}{5}(x + 5)$ \Rightarrow 5 y = 2(x+5) \Rightarrow 5 y = 2x + 10 $\therefore 2x - 5y + 10 = 0$

Steps

Inequality 2: Left of the *y*-axis $\Rightarrow y \le 0$

- 2. Substitute a test point (usually (0, 0)) into the equation of the line. The left-hand side will be either less than or greater than the right-hand side.
- The side of the line with (0, 0) obeys the inequality found in Step 2.
 The other side is the opposite to the inequality found in Step 2.

Inequality 3:

- **2**. Substitute (0, 0) into $K \Rightarrow 2(0) 5(0) + 10 = 10 \ge 0$
- **3**. The indicated region is on the same side as (0, 0).

Therefore, $2x - 5y + 10 \ge 0$ is the inequality of the indicated region.

Three inequalities: $x \le 0$, $y \ge 0$, $2x - 5y + 10 \ge 0$

11 (b) MAXIMISING AND MINIMISING PROBLEMS

STEPS

- 1. Choose two variables *x* and *y* to represent two different quantities.
- 2. Draw up a table with restrictions and form the inequalities.
- **3**. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities.
- **4**. Find the vertices of the region by solving the equations of the lines simultaneously.
- **5**. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function.

1. Let x = Number of cottages

2.

Let y = Number of apartments

	Cottages	Apartments	Restriction
Adults	3 <i>x</i>	2y	60
Children	5x	2у	80

Adults inequality: $3x + 2y \le 60$

Children inequality: $5x + 2y \le 80$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

3. Plot the four inequalities.

Graph $3x + 2y \le 60$. Draw the line 3x + 2y = 60. Call it *K*. Intercepts: (0, 30), (20, 0). Test with $(0, 0) \Rightarrow 3(0) + 2(0) = 0 \le 60$. This is true. Shade the side of the line that contains (0, 0).

Graph $5x + 2y \le 80$. Draw the line 5x + 2y = 80. Call it *L*.

Intercepts: (0, 40), (16, 0). Test with (0, 0) \Rightarrow 5(0) + 2(0) = 0 \leq 80. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 30) and (16, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

$$3x + 2y = 60...(1)
5x + 2y = 80...(2) (x-1)
$$3x + 2y
-5x - 2y
-2x$$$$

$$3x+2y = 60$$

$$-5x-2y = -80$$

$$-2x = -20 \Longrightarrow x = 10$$

Substitute x = 10 back into Eqn. (1).

 $\Rightarrow 3(10) + 2y = 60 \Rightarrow 2y = 30 \Rightarrow y = 15$

Therefore (10, 15) is the final vertex of the region.

5. Rental income = 65x + 40y is the function to be minimised.

	65x + 40y	Income
(0, 0)	65(0) + 40(0)	€0
(0, 30)	65(0) + 40(30)	€1200
(10, 15)	65(10) + 40(15)	€1250
(16, 0)	65(16) + 40(0)	€1040

Therefore, 10 cottages and 15 apartments give the maximum rental income.

Construction costs = 200000x + 120000y is the function to be minimised.

	200000x + 120000y	Cost
(0, 0)	200000(0) + 120000(0)	€0
(0, 30)	20000(0) + 120000(30)	€3,600,000
(10, 15)	200000(10) + 120000(15)	€3,800,000
(16, 0)	200000(16) + 120000(0)	€3,200,000

Therefore, 16 cottages and 0 apartments give the minimum construction costs.

Answers

- **11 (b)** (i) $3x + 2y \le 60, 5x + 2y \le 80$
 - (ii) 10 cottages, 15 apartments
 - (iii) 16 cottages and 0 apartments