LINEAR PROGRAMMING (Q 11, PAPER 2)

2005


```
Inequality 1: Above the x-axis \Rightarrow x \ge 0
Inequality 2: Right of the y-axis \Rightarrow y \ge 0
```

STEPS

- 2. Substitute a test point (usually (0, 0)) into the equation of the line. The left-hand side will be either less than or greater than the right-hand side.
- **3**. The side of the line with (0, 0) obeys the inequality found in Step **2**. The other side is the opposite to the inequality found in Step **2**.

Inequality 3:

- **2**. Substitute (0, 0) into $K \implies 2(0) + (0) 8 = -8 \le 0$
- **3**. The indicated region is on the same side as (0, 0).

Therefore, $2x + y - 8 \le 0$ is the inequality of the indicated region.

Three inequalities: $x \ge 0$, $y \ge 0$, $2x + y - 8 \le 0$

11 (b) MAXIMISING AND MINIMISING PROBLEMS

STEPS

- **1**. Choose two variables *x* and *y* to represent two different quantities.
- 2. Draw up a table with restrictions and form the inequalities.
- **3**. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities.
- **4**. Find the vertices of the region by solving the equations of the lines simultaneously.
- **5**. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function.

1. Let x = Number of chairs

- Let y = Number of tables
- 2.

	Chairs	Tables	Restriction
Raw material	2x	5y	800
Time	4x	4 <i>y</i>	1000

Raw material inequality: $2x + 5y \le 800$

Time inequality: $4x + 4y \le 1000 \Rightarrow x + y \le 250$

As always, there are two inequalities that are obvious: $x \ge 0$ and $y \ge 0$.

3. Plot the four inequalities.

Graph $2x + 5y \le 800$. Draw the line 2x + 5y = 800. Call it *K*. Intercepts: (0, 160), (400, 0). Test with (0, 0) $\Rightarrow 2(0) + 5(0) = 0 \le 800$. This is true. Shade the side of the line that contains (0, 0).

Graph $x + y \le 250$. Draw the line x + y = 250. Call it *L*.

Intercepts: (0, 250), (250, 0). Test with $(0, 0) \Rightarrow (0) + (0) = 0 \le 250$. This is true. Shade the side of the line that contains (0, 0).

4. You already know the coordinates of the vertices of the shaded region that are on the axes: (0, 0), (0, 160) and (250, 0).

The only one you need to work out simultaneously is where the lines K and L intersect.

$$2x+5y=800...(1)$$

 $x+y=250...(2)$ (×-2)

$$2x+5y = 800$$
$$-2x-2y = -500$$
$$3y = 300 \Rightarrow y = 100$$

Substitute y = 100 back into Eqn. (2).

 $\Rightarrow x + (100) = 250 \Rightarrow x = 250 - 100 = 150$

Therefore (150, 100) is the final vertex of the region.

5. Income = 20x + 40y is the function to be minimised.

	20x + 40y	Income
(0, 0)	20(0) + 40(0)	€0
(0, 160)	20(0) + 40(160)	€6400
(150, 100)	20(150) + 40(100)	€7000
(250, 0)	20(250) + 40(0)	€5000

Therefore, 150 chairs and 100 tables give the maximum income.

11 (b) (i) $2x + 5y \le 800$, $x + y \le 250$ 11 (b) (ii) x = 150, y = 10011 (b) (iii) Manufacturing costs $= 150 \times €17 + 100 \times €34.70 = €6020$ Profit = €7000 - €6020 = €980Profit as a percentage of income $= \frac{€980}{€7000} \times 100\% = 14\%$