Linear Programming (Q 11, Paper 2)

2002
11 (a) The equation of the line M is $2 x+y=10$. The equation of the line N is $4 x-y=8$.

Write down the three inequalities that define the shaded region in the diagram.

(b) A new ship is being designed. It can have two types of cabin accommodation for passengers - type A cabins and type B cabins.

Each type A cabin accommodates 6 passsengers and each type B cabin accommodates 3 passengers. The maximum number of passengers that the ship can accommodate is 330 .

Each type A cabin occupies $50 \mathrm{~m}^{3}$ of floor space. Each type B cabin occupies $10 \mathrm{~m}^{3}$ of floor space. The total amount of floor space occupied by cabins cannot exceed $2300 \mathrm{~m}^{3}$.
(i) Taking x to represent the number of type A cabins and y to represent the number of type B cabins, write down two inequalities in x and y and illustrate these on graph paper.
(ii) The income on each voyage from renting the cabins to passengers is $€ 600$ for each type A cabin and $€ 180$ for each type B cabin. How many of each type of cabin should the ship have so as to maximise income, assuming that all cabins are rented?
(iii) What is the maximum possible income on each voyage from renting the cabins?

Solution

11 (a)

Equation of $M: 2 x+y=10$
Test with $(0,0): 2(0)+(0)=0 \leq 10$
Shaded side is on the same side as $(0,0)$.
$\therefore 2 x+y \leq 10$

Equation of $N: 4 x-y=8$

Test with $(0,0): 4(0)-(0)=0 \leq 8$
Shaded side is on the same side as $(0,0)$.
$\therefore 4 x-y \leq 8$
y-axis: $x=0$
Shaded side is right of this line.
$\therefore x \geq 0$

$$
\begin{array}{ll}
& \geq: \rightarrow \text { (Right) } \\
\text { Vertical Lines: } \\
& \leq: \leftarrow(\mathrm{Left})
\end{array}
$$

11 (b) Maximising and Minimising Problems
Steps

1. Choose two variables x and y to represent two different quantities.
2. Draw up a table with restrictions and form the inequalities.
3. Plot the lines in the same diagrams and shade the region satisfied by all the inequalities.
4. Find the vertices of the region by solving the equations of the lines simultaneously.
5. Maximise or minimise the given functions by substituting the coordinates of the vertices into the function.
6. Let $x=$ Number of Type A cabins

Let $y=$ Number of Type B cabins
2.

	Type A	Type B	Restriction
Accommodation	$6 x$	$3 y$	330
Floor space	$50 x$	$10 y$	2300

Accommodation inequality: $6 x+3 y \leq 330 \Rightarrow 2 x+y \leq 110$
Floor space inequality: $50 x+10 y \leq 2300 \Rightarrow 5 x+y \leq 230$
As always, there are two inequalities that are obvious: $x \geq 0$ and $y \geq 0$.
3. Plot the four inequalities.

Graph $2 x+y \leq 110$. Draw the line $2 x+y=110$. Call it K.
Intercepts: $(0,110),(55,0)$. Test with $(0,0) \Rightarrow 2(0)+(0)=0 \leq 110$. This is true.
Shade the side of the line that contains $(0,0)$.

Graph $5 x+y \leq 230$. Draw the line $5 x+y=230$. Call it L.
Intercepts: $(0,230),(46,0)$. Test with $(0,0) \Rightarrow 5(0)+(0)=0 \leq 230$.
This is true. Shade the side of the line that contains $(0,0)$.

4. You already know the coordinates of the vertices of the shaded region that are on the axes: $(0,0),(0,110)$ and $(46,0)$.
The only one you need to work out simultaneously is where the lines K and L intersect.

$$
\begin{aligned}
& 2 x+y=110 \ldots(\mathbf{1})(x-1) \\
& 5 x+y=230 \ldots(2)
\end{aligned}
$$

$$
\begin{aligned}
&-2 x-y=-110 \\
& 5 x+y=230 \\
& \hline 3 x \quad=120 \Rightarrow x=40
\end{aligned}
$$

Substitute $x=40$ back into Eqn. (1).

$$
\Rightarrow 2(40)+y=110 \Rightarrow y=110-80=30
$$

Therefore $(40,30)$ is the final vertex of the region.
5. Income $=600 x+180 y$ is the function to be maximised.

	$600 x+180 y$	Income
$(0,0)$	$600(0)+180(0)$	$€ 0$
$(0,110)$	$600(0)+180(110)$	$€ 19,800$
$(40,30)$	$600(40)+180(30)$	$€ 29,400$
$(46,0)$	$600(46)+180(0)$	$€ 27,600$

Therefore, 40 type A cabins and 30 type B cabins give the maximum rental income.

Answers

11 (b) (i) $2 x+y \leq 110,5 x+y \leq 230$
11 (b) (ii) $x=40, y=30$
11 (b) (iii) €29,400

