Linear Programming (Q 11, Paper 2)

2006
11 (a) The equation of the line L is $5 x+8 y+40=0$. The equation of the line K is $10 x-7 y-35=0$. Write down the 3 inequalities that together define the shaded region in the diagram.

(b) Due to a transport disruption, a bus company is contracted at short notice to carry up to 1500 passengers to complete their journey. Passengers not carried by this company will be carried by a taxi company.

The bus company has available standard buses and mini-buses. Each standard bus carries 60 passengers and each mini-bus carries 30 passengers.

Each bus is operated by one driver and there are at most 30 drivers available.
(i) Taking x as the number of standard buses and y as the number of mini-buses, write down two inequalities in x and y and illustrate them on graph paper.
(ii) The operating profit for the journey is $€ 80$ for a standard bus and $€ 50$ for a minibus. How many of each type of bus should be used in order to maximise the profit?
(iii) If the bus company paid each driver a bonus for working at short notice, the operating profit for each bus would be reduced by $€ 30$. By how much would this decrease the maximum profit available to the company?

Answers

11 (a) $5 x+8 y+40 \geq 0,10 x-7 y-35 \leq 0, y \leq 0$
(b) (i) $x+y \leq 30,2 x+y \leq 50$
(ii) $x=20, y=10$
(iii) €850

