Linear Programming (Q 11, Paper 2)

1996

11 (a) The equation of the line K is $y-x=0$ and the equation of the line N is $y-4=0$.
(i) Write down the three inequalities which define the triangular region indicated in the diagram.
(ii) In a diagram, illustrate the set of points
 (x, y) that satisfy $y-4 \geq 0, y-x \leq 0$ and $x-6 \leq 0$.
(b) A property developer wishes to construct a business centre consisting of shops and offices. The floor space required for each shop is $60 \mathrm{~m}^{2}$ and for each office is $20 \mathrm{~m}^{2}$. The total floor space for the business centre cannot exceed $960 \mathrm{~m}^{2}$.

The construction of each shop takes 5 working days to complete and each office 3 working days to complete. The developer has at most 120 working days to complete the construction.
(i) If the developer constructs x shops and y offices, write two inequalities in x and y and illustrate these on graph paper.
(ii) If the rental charge is IR£200 per m^{2} for a shop and IR£140 per m^{2} for an office, how many of each type should be built so as to maximize the developer's rental income? Find this maximum rental income.
(iii) If each shop provides 7 jobs and each office 3 jobs, write an expression in x and y for the total number of jobs to be provided. How many of each type should be built so as to maximize the number of jobs?

Answers

11 (a) (i) $y-x \geq 0, y-4 \leq 0, x \geq 0$
(b) (i) $3 x+y \leq 48,5 x+3 y \leq 120$
(ii) $x=0, y=40 ; £ 5600$
(iii) $x=0, y=40$

