The Line (Q 2, Paper 2)

Lesson No. 8: Area of a Triangle

2007

2 (c) $a(-4,3), b(6,-1)$ and $c(2,7)$ are three points.
(i) Find the area of triangle $a b c$.
(ii) $a b c d$ is a parallelogram in which [ac] is a diagonal.

Find the co-ordinates of the point d.

Solution

2 (c) (i) The area, A, of $\Delta a o b$ with vertices $o(0,0), a\left(x_{1}, y_{1}\right), b\left(x_{2}, y_{2}\right)$ is given by:
$A=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$
6

Steps

1. Translate one point to $(0,0)$.
2. Do the same translation to the other two points.
3. Apply the formula.
$a(-4,3) \rightarrow(0,0) \quad$ Translate a to $(0,0)$ by adding 4 to the x part and taking 3
$b(6,-1) \rightarrow(10,-4) \quad$ away from the y part. Do the same to the other two
$c(2,7) \rightarrow(6,4) \quad$ points.

$$
\begin{aligned}
& A=\frac{1}{2}|(10)(4)-(-4)(6)| \\
& \Rightarrow A=\frac{1}{2}|40+24| \\
& \therefore A=\frac{1}{2}|64|=32 \text { square units }
\end{aligned}
$$

2 (c) (ii) Sketch the points $a b c$. The fourth point, d, of the parallelogram $a b c d$ is obtained by finding the image of c under a translation from b to a.

$$
\begin{aligned}
& b(6,-1) \rightarrow a(-4,3) \\
& c(2,7) \rightarrow d(-8,11)
\end{aligned}
$$

2006

2 (a) $a(-2,6)$ and $b(4,3)$ are two points.
(i) Plot a and b on a co-ordinate diagram.
(ii) From your diagram, write down the co-ordinates of the point at which the line $a b$ cuts the y-axis.
(iii) Find the slope of $a b$.
(iv) Calculate the area of the triangle $a b c$, where the co-ordinates of c are $(1,-3)$.

Solution

2 (a) (i)

2 (a) (ii)

You can see the line cuts the y-axis at $(0,5)$.

2 (a) (iii)

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \ldots \ldots .3 \quad \begin{aligned}
& \text { Remember IT As: } \\
& \text { Slope } m=\frac{\text { Difference in } y^{\prime} s}{\text { Difference in } x^{\prime} s}
\end{aligned}
$$

$$
\begin{array}{ccc}
a(-2,6) & b(4,3) \\
\downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} \\
y_{2}
\end{array} \quad m=\frac{3-6}{4-(-2)}=\frac{-3}{4+2}=\frac{-3}{6}=-\frac{1}{2}
$$

2 (a) (iv) The area, A, of $\Delta a o b$ with vertices $o(0,0), a\left(x_{1}, y_{1}\right), b\left(x_{2}, y_{2}\right)$ is given by: $A=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$ 6

Steps

1. Translate one point to $(0,0)$.
2. Do the same translation to the other two points.
3. Apply the formula.
$a(-2,6) \rightarrow(-3,9) \quad$ Translate c to $(0,0)$ by taking 1 away from the x part and $b(4,3) \quad \rightarrow \quad(3,6) \quad$ adding 3 to the y part. Do the same to the other two $c(1,-3) \rightarrow(0,0) \quad$ points.

$$
\begin{array}{cccc}
a(-3, & 9) & b(3, & 6) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} & y_{2} \\
\hline
\end{array}
$$

$A=\frac{1}{2}|(-3)(6)-(9)(3)|$
$\Rightarrow A=\frac{1}{2}|-18-27|$
$\therefore A=\frac{1}{2}|-45|=\frac{45}{2}$ square units

2004

2 (b) $a(-1,-2), b(3,1), c(0,4)$ are three points.
(i) Find the length of $[a b]$.
(ii) Calculate the area of the triangle $a b c$.
(iii) The line L is parallel to $a b$ and passes through the point c.

Find the equation of L.
(iv) Show that the point $d(-4,1)$ is on L.
(v) Investigate whether $a b c d$ is a parallelogram.

Solution

2 (b) (i)

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \ldots \ldots
$$

The distance between a and b is written as $|a b|$.
Remember the distance formula as:
$d=\sqrt{\left(\text { Difference in } x^{\prime} s\right)^{2}+\left(\text { Difference in } y^{\prime} s\right)^{2}}$

$$
\begin{array}{ccc}
a(-1, & -2) & b(3,1) \\
\downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} y_{2} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& |a b|=\sqrt{(3-(-1))^{2}+(1-(-2))^{2}} \\
& \Rightarrow|a b|=\sqrt{(3+1)^{2}+(1+2)^{2}} \\
& \Rightarrow|a b|=\sqrt{4^{2}+3^{2}}=\sqrt{16+9} \\
& \therefore|a b|=\sqrt{25}=5
\end{aligned}
$$

2 (b) (ii) The area, A, of $\Delta a o b$ with vertices $o(0,0), a\left(x_{1}, y_{1}\right), b\left(x_{2}, y_{2}\right)$ is given by:

$$
A=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right| \ldots \ldots .
$$

Steps

1. Translate one point to $(0,0)$.
2. Do the same translation to the other two points.
3. Apply the formula.
$a(-1,-2) \rightarrow(0,0) \quad$ Translate a to $(0,0)$ by adding 1 to the x part and adding
$b(3,1) \quad \rightarrow(4,3) \quad 2$ to the y part. Do the same to the other two points.
$c(0,4) \quad \rightarrow \quad(1,6)$

$(4,3)$	$(1,6)$		
$\downarrow \downarrow$	$\downarrow \downarrow$		
$x_{1} y_{1}$	$x_{2} y_{2}$	\quad	$A=\frac{1}{2}\|(4)(6)-(3)(1)\|$
:---			

2 (b) (iii)

Firstly, find the slope of $a b$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \ldots \ldots .3 \quad \text { Remember it as: } \quad \text { Slope } m=\frac{\text { Difference in } y^{\prime} \mathrm{s}}{\text { Difference in } x^{\prime} \mathrm{s}}
$$

$$
\begin{array}{ccc}
a(-1, & -2) & b(3,1) \\
\downarrow & \downarrow & \downarrow \downarrow \\
x_{1} & y_{1} & x_{2} \\
y_{2}
\end{array} \quad m=\frac{1-(-2)}{3-(-1)}=\frac{1+2}{3+1}=\frac{3}{4}
$$

Parallel lines have the same slope.

The slope of L is also $\frac{3}{4}$.
The equation of a line is a formula satisfied by every point (x, y) on the line.
Equation of a line:
$y-y_{1}=m\left(x-x_{1}\right)$
4

Equation of L : Point $\left(x_{1}, y_{1}\right)=(0,4)$, slope $m=\frac{3}{4}$.
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-4=\frac{3}{4}(x-0)$
$\Rightarrow 4(y-4)=3 x$
$\Rightarrow 4 y-16=3 x$
$\therefore 3 x-4 y+16=0$
2 (b) (iv)
Is A point on a line?
To show a point is on a line, put the point into the equation.
If you put the point d into L, it will satisfy the equation.
$d(-4,1) \in L$? $3(-4)-4(1)+16=-12-4+16$
$=0 \Rightarrow d(-4,1) \in L$

2 (b) (v)

To prove abcd is a parallelogram: Find the slopes of each side and show opposite sides have the same slopes.

Slope of $a b: m=\frac{3}{4}$
Slope of $d c: m=\frac{1-4}{-4-0}=\frac{-3}{-4}=\frac{3}{4}$
Slope of ad: $m=\frac{1-(-2)}{-4-(-1)}=\frac{1+2}{-4+1}=\frac{3}{-3}=-1$

Slope of $b c$: $m=\frac{1-4}{3-0}=\frac{-3}{3}=-1$
Opposite sides have the same slope. Therefore, abcd is a parallelogram.

2002

2 (b) The line L has equation $4 x-5 y=-40$. $a(0,8)$ and $b(-10,0)$ are two points.
(i) Verify that a and b lie on L.
(ii) What is the slope of L ?
(iii) The line K is perpendicular to L and it contains b. Find the equation of K.
(iv) K intersects the y-axis at the point c. Find the co-ordinates of c.
(v) d is another point such that $a b c d$ is a rectangle. Calculate the area of $a b c d$.
(vi) Find the co-ordinates of d.

Solution

2 (b) (i)
Is a point on a line?
To show a point is on a line, put the point into the equation.
$a(0,8) \in L$?
$4 x-5 y=4(0)-5(8)$
$=0-40$
$=-40 \Rightarrow a(0,8) \in L$
$b(-10,0) \in L$?
$4 x-5 y=4(-10)-5(0)$
$=-40+0$
$=-40 \Rightarrow b(-10,0) \in L$
2 (b) (ii)
General form of a straight line
Every straight line can be written in the form: $a x+b y+c=0$.
You can read off the slope of a straight line from its equation.

$$
\text { Slope: } m=-\left(\frac{a}{b}\right) \ldots . . .
$$

Remember it as: Slope $m=-\left(\frac{\text { Number in front of } x}{\text { Number in front of } y}\right)$
Slope of L : $m=\frac{4}{5}$
2 (b) (iii)
Finding the perpendicular slope: Invert the slope and change its sign.

The equation of a line is a formula satisfied by every point (x, y) on the line.
Equation of a line:
$y-y_{1}=m\left(x-x_{1}\right)$
4

Equation of K : Slope $m=-\frac{5}{4}$, point $\left(x_{1}, y_{1}\right)=(-10,0)$
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-0=-\frac{5}{4}(x-(-10))$
$\Rightarrow y=-\frac{5}{4}(x+10)$
$\Rightarrow 4 y=-5(x+10)$
$\Rightarrow 4 y=-5 x-50$
$\therefore 5 x+4 y+50=0$
2 (b) (iv)

To find the x-intercept: Put $y=0$. To find the y-intercept: Put $x=0$.

Put $x=0$:
$\therefore 5(0)+4 y+50=0$
$\Rightarrow 4 y=-50$
$\therefore y=-\frac{50}{4}=-\frac{25}{2}$
$\Rightarrow c\left(0,-\frac{25}{2}\right)$ is the y intercept.

2 (b) (v)

The rectangle $a b c d$ is bisected by the diagonal $a c$. Find the area of triangle $a b c$ and double it to find the area of $a b c d$.

The area, A, of $\Delta a o b$ with vertices $o(0,0), a\left(x_{1}, y_{1}\right), b\left(x_{2}, y_{2}\right)$ is given by:

$$
A=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|
$$

6

Steps

1. Translate one point to $(0,0)$.
2. Do the same translation to the other two points.
3. Apply the formula.

$$
\begin{array}{lll}
a(0,8) & \rightarrow(0,0) & \text { Translate } a \text { to }(0,0) \text { by leaving the } x \text { part unchanged and } \\
b(-10,0) \rightarrow(-10,-8) & \text { taking } 8 \text { away from the } y \text { part. Do the same to the other } \\
c\left(0,-\frac{25}{2}\right) \rightarrow\left(0,-\frac{41}{2}\right) & \text { two points. }
\end{array}
$$

Area of triangle $a b c$: $A=\frac{1}{2}\left|(-10)\left(-\frac{41}{2}\right)-(-8)(0)\right|$

$$
\Rightarrow A=\frac{1}{2}|205+0|=\frac{205}{2}
$$

Area of rectangle $a b c d$: $A=205$ square units

2 (b) (vi)

To find d, do a translation.

2001

2 (b) $a(4,2), b(-2,0)$ and $c(0,4)$ are three points.
(i) Prove that $a c \perp b c$.
(ii) Prove that $|a c|=|b c|$.
(iii) Calculate the area of the triangle bac.
(iv) The diagonals of the square bahg intersect at c.

Find the co-ordinates of h and the co-ordinates of g.
(v) Find the equation of the line $b c$ and show that h lies on this line.

Solution

2 (b) (i)

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \ldots \ldots . .3 \quad \begin{aligned}
& \text { Remember it as: } \\
& \text { Slope } m=\frac{\text { Difference in } y^{\prime} \text { 's }}{\text { Difference in } x^{\prime} \text { 's }}
\end{aligned}
$$

$$
\begin{array}{cc}
a(4,2) & c(0,4) \\
\downarrow \downarrow & \downarrow \downarrow \\
x_{1} y_{1} & x_{2} y_{2}
\end{array}
$$

$$
\text { Slope of } a c: m_{1}=\frac{4-2}{0-4}=\frac{2}{-4}=-\frac{1}{2}
$$

$$
\begin{array}{cc}
b(-2,0) & c(0,4) \\
\downarrow & \downarrow \\
x_{1} & y_{1} \\
x_{2} y_{2}
\end{array}
$$

Slope of $b c: m_{2}=\frac{4-0}{0-(-2)}=\frac{4}{2}=2$

Two lines are perpendicular if the product of their slopes is -1 .

$$
m_{1} \times m_{2}=\left(-\frac{1}{2}\right) \times 2=-1 \Rightarrow a c \perp b c
$$

$K \perp L \Rightarrow m_{1} \times m_{2}=-1$
2 (b) (ii)

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \ldots \ldots
$$

The distance between a and b is written as $|a b|$.
Remember the distance formula as:

$d=\sqrt{\left(\text { Difference in } x^{\prime} \mathrm{s}\right)^{2}+\left(\text { Difference in } y^{\prime} \mathrm{s}\right)^{2}}$

$$
\begin{aligned}
& |a c|=\sqrt{(0-4)^{2}+(4-2)^{2}} \\
& \Rightarrow|a c|=\sqrt{(-4)^{2}+(2)^{2}}=\sqrt{16+4}
\end{aligned}
$$

$$
\therefore|a c|=\sqrt{20}
$$

$$
\begin{array}{cc}
b(-2,0) & c(0,4) \\
\downarrow & \downarrow \\
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}
$$

$\therefore|a c|=|b c|$

$$
\begin{aligned}
& |b c|=\sqrt{(0-(-2))^{2}+(4-0)^{2}} \\
& \Rightarrow|b c|=\sqrt{(2)^{2}+(4)^{2}}=\sqrt{4+16} \\
& \therefore|b c|=\sqrt{20}
\end{aligned}
$$

Cont.....

2 (b) (iii) The area, A, of $\Delta a o b$ with vertices $o(0,0), a\left(x_{1}, y_{1}\right), b\left(x_{2}, y_{2}\right)$ is given by: $A=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$ 6

Steps

1. Translate one point to $(0,0)$.
2. Do the same translation to the other two points.
3. Apply the formula.

$$
\left.\begin{array}{llll}
\begin{array}{lll}
a(4,2) & \rightarrow & (6,2) \\
b(-2,0) & \rightarrow & (0,0)
\end{array} & \begin{array}{l}
\text { Translate } b \text { to }(0,0) \text { by } \\
0 \text { to the } y \text { part. Do the sa } \\
c(0,4)
\end{array} & \rightarrow & (2,4)
\end{array}\right] \begin{array}{ccc}
\begin{array}{ccc}
(6,2) & (2,4) & A=\frac{1}{2}|(6)(4)-(2)(2)| \\
\downarrow \downarrow & \downarrow \downarrow & \Rightarrow A=\frac{1}{2}|24-4|=\frac{1}{2}|20| \\
x_{1} y_{1} & x_{2} y_{2} & \\
& \therefore A=10 \text { square units }
\end{array}
\end{array}
$$

Translate b to $(0,0)$ by adding 2 to the x part and adding

2 (b) (iv)

The diagonals of a square bisect each other. To find out the co-ordinates of g and h send points b and a through c by a central symmetry.

To go from b to c, you add 2 to the x-coordinate and 4 to the y-coordinate. Therefore, to go from c to h, you do exactly the same.
$\therefore b(-2,0) \rightarrow c(0,4) \rightarrow h(2,8)$
Note: c is the midpoint of [bh].

To go from a to c, you take away 4 from the x-coordinate and add 2 to the y-coordinate. Therefore, to go from c to g, you do exactly the same.
$\therefore a(4,2) \rightarrow c(0,4) \rightarrow g(-4,6)$

Ans: $g(-4,6), h(2,8)$
2 (b) (v)
The equation of a line is a formula satisfied by every point (x, y) on the line.
Equation of a line:
$y-y_{1}=m\left(x-x_{1}\right)$ 4

Equation of $b c$: Point $c(0,4)$, slope $m=2$ [found in 2 (b) (i)]
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-4=2(x-0)$
$\Rightarrow y-4=2 x$
$\therefore 2 x-y+4=0$

Is A Point on a line?

To show a point is on a line, put the point into the equation.

$$
\begin{aligned}
& h(2,8) \in b c ? \\
& 2(2)-(8)+4 \\
& =4-8+4 \\
& =0 \Rightarrow h(2,8) \in b c
\end{aligned}
$$

2000

2 (c) (i) The line L has equation $3 x-4 y+20=0$.
K is the line through $p(0,5)$ which is perpendicular to L.
Find the equation of K.
(ii) L cuts the x-axis at the point t.
K cuts the x-axis at the point r.
Calculate the area of the triangle ptr. Give your answer as a fraction.

Solution

2 (c) (i)

General form of a straight line
Every straight line can be written in the form: $a x+b y+c=0$.
You can read off the slope of a straight line from its equation.

$$
\text { Slope: } m=-\left(\frac{a}{b}\right) \text {....... } 5
$$

Remember it as: Slope $m=-\left(\frac{\text { Number in front of } x}{\text { Number in front of } y}\right)$
$L: 3 x-4 y+20=0 \Rightarrow m=\frac{3}{4}$

Finding the perpendicular slope: Invert the slope and change its sign.
K is perpendicular to L.
Equation of K : Point $p(0,5)$, slope $m=-\frac{4}{3}$.
The equation of a line is a formula satisfied by every point (x, y) on the line.
Equation of a line: $y-y_{1}=m\left(x-x_{1}\right)$
4
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-5=-\frac{4}{3}(x-0)$
$\Rightarrow 3(y-5)=-4 x$
$\Rightarrow 3 y-15=-4 x$
$\therefore 4 x+3 y-15=0$

2 (c) (ii)

Finding where L cuts the x-axis.

$$
\begin{aligned}
y=0: & 3 x-4(0)+20=0 \\
& \Rightarrow 3 x=-20 \\
& \Rightarrow x=-\frac{20}{3} \Rightarrow\left(-\frac{20}{3}, 0\right) \text { is the } x \text {-intercept. }
\end{aligned}
$$

To find the x-intercept: Put $y=0$. To find the y-intercept: Put $x=0$.

Finding where K cuts the x-axis.

$$
\begin{aligned}
y=0: & 4 x+3(0)-15=0 \\
& \Rightarrow 4 x=15 \\
& \therefore x=\frac{15}{4} \Rightarrow\left(\frac{15}{4}, 0\right) \text { is the } x \text {-intercept. }
\end{aligned}
$$

The area, A, of $\Delta a o b$ with vertices $o(0,0), a\left(x_{1}, y_{1}\right), b\left(x_{2}, y_{2}\right)$ is given by: $A=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$ 6

Steps

1. Translate one point to $(0,0)$.
2. Do the same translation to the other two points.
3. Apply the formula.
$p(0,5) \quad \rightarrow(0,0) \quad$ Translate p to $(0,0)$ by adding 0 to the x part and taking 5
$t\left(-\frac{20}{3}, 0\right) \rightarrow\left(-\frac{20}{3},-5\right) \quad$ away from the y part. Do the same to the other two
$r\left(\frac{15}{4}, 0\right) \rightarrow\left(\frac{15}{4},-5\right)$ points.

$$
\begin{array}{|cccc|}
\hline\left(-\frac{20}{3},\right. & -5) & \left(\frac{15}{4},\right. & -5) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} & y_{2} \\
\hline
\end{array}
$$

$$
A=\frac{1}{2}\left|\left(-\frac{20}{3}\right)(-5)-(-5)\left(\frac{15}{4}\right)\right|
$$

$$
\Rightarrow A=\frac{1}{2}\left|\frac{100}{3}+\frac{75}{4}\right|
$$

$$
\therefore A=\frac{625}{24} \text { square units }
$$

1997

2 (b) L is the line $x-2 y+2=0$.
M is the line $3 x+y-8=0$.
Find the co-ordinates of p, the point of intersection of L and M.
L and M cut the x-axis at q and r, respectively.
Find the area of triangle $p q r$.

Solution

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

3

Remember it as:

Slope $m=\frac{\text { Difference in } y^{\prime} s}{\text { Difference in } x^{\prime} s}$

$a(0,4)$	$b(3,0)$
$\downarrow \downarrow$	$\downarrow \downarrow$
$x_{1} y_{1}$	$x_{2} y_{2}$

Slope of $a b$: $m=\frac{0-4}{3-0}=\frac{-4}{3}=-\frac{4}{3}$

Equation of K : Point $a(4,0)=\left(x_{1}, y_{1}\right)$, slope $m=-\frac{4}{3}$
The equation of a line is a formula satisfied by every point (x, y) on the line.
Equation of a line:
$y-y_{1}=m\left(x-x_{1}\right)$
4
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-4=-\frac{4}{3}(x-0)$
$\Rightarrow 3(y-4)=-4 x$
$\Rightarrow 3 y-12=-4 x$
$\Rightarrow 4 x+3 y-12=0$

Finding the perpendicular slope: Invert the slope and change its sign.
Equation of N : Point $\left(x_{1}, y_{1}\right)=(0,0)$, slope $m=\frac{3}{4}$
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-0=\frac{3}{4}(x-0)$
$\Rightarrow 4 y=3 x$
$\therefore 3 x-4 y=0$
To answer the last part plot the points and lines to give you a better idea of how to proceed.

Axial Symmetry: This is the movement of a point perpendicular to a line and out the same distance at right angles to the line.

If b is the image of a under an axial symmetry in N, then the point of intersection of K and N must be the same as the midpoint of $[a b]$.

The formula for the midpoint, c, of the line segment [ab] is:

$$
\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
\text { (2) } a\left(x_{1}, y_{1}\right)
$$

Remember the midpoint formula as: Midpoint $=\left(\frac{\text { Add the } x^{\prime} \text { s }}{2}, \frac{\text { Add the } y^{\prime} \text { s }}{2}\right)$

$$
\begin{array}{cc}
a(0,4) & b(3,0) \\
\downarrow \downarrow & \downarrow \downarrow \\
x_{1} y_{1} & x_{2} y_{2}
\end{array} \quad \text { Midpoint }=\left(\frac{0+3}{2}, \frac{4+0}{2}\right)=\left(\frac{3}{2}, \frac{4}{2}\right)=\left(\frac{3}{2}, 2\right)
$$

Find the point of intersection of K and N

Intersecting Lines

To find out where two lines intersect, solve their equations simultaneously.
\(\left.\begin{array}{rr}4 x+3 y-12=0 ···(\mathbf{1})(\times 4)

3 x-4 y \quad=0 ···(2)(\times 3)\end{array}\right]\)| $16 x+12 y-48=0$ |
| ---: |
| $9 x-12 y=0$ |
| $25 x-48=0 \Rightarrow 25 x=-48 \Rightarrow x=-\frac{48}{25}$ |

You can see the x value of the point of intersection does not match the the x value of the midpoint. Therefore, b is not an image of a under an axial symmetry in N.

1996

2 (a) The line L contains the points $p(3,-1)$ and $q(0,2)$.
(i) Find the slope of L.
(ii) Find the equation of L.
(iii) L intersects the x-axis at the point r. Find the coordinates of r.
(iv) Calculate the ratio

$$
\frac{\text { area of triangle } r p o}{\text { area of triangle } p q o}
$$

where o is the origin.

Solution

2 (a) (i)

$$
\begin{array}{ll}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \ldots \ldots . .3 \\
\text { Remember it as: } \\
\text { Slope } m=\frac{\text { Difference in } y^{\prime} s}{\text { Difference in } x^{\prime} s}
\end{array}
$$

$$
\begin{array}{ccc}
p(3,-1) & q(0,2) \\
\downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} y_{2}
\end{array}
$$

$$
\text { Slope of } L \text { : } m=\frac{2-(-1)}{0-3}=\frac{2+1}{0-3}=\frac{3}{-3}=-1
$$

2 (a) (ii)
The equation of a line is a formula satisfied by every point (x, y) on the line.
Equation of a line:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$4

Equation of L : point $q(0,2)=\left(x_{1}, x_{2}\right)$, slope $m=-1$
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-2=-1(x-0)$
$\Rightarrow y-2=-x$
$\therefore x+y-2=0$
2 (a) (iii)

> To find the x-intercept: Put $y=0$. To find the y-intercept: Put $x=0$.

To find the x-intercept of L, put $y=0$.
$y=0: x+(0)-2=0 \Rightarrow x=2 \Rightarrow r(2,0)$ is the x-intercept.

2 (a) (iv) The area, A, of $\Delta a o b$ with vertices $o(0,0), a\left(x_{1}, y_{1}\right), b\left(x_{2}, y_{2}\right)$ is given by:

$$
y=0: x+(0)-\ldots . . .
$$

Steps

1. Translate one point to $(0,0)$.
2. Do the same translation to the other two points.
3. Apply the formula.

Area of triangle rpo: One of the points is already $(0,0)$ so all you have to do is apply the formula to the other 2 points.

$$
\begin{array}{ccc|}
\hline r(2,0) & p(3,-1) \\
\downarrow \downarrow & \downarrow & \downarrow \\
x_{1} y_{1} & x_{2} y_{2} &
\end{array} \quad \begin{aligned}
& A_{1}=\frac{1}{2}|(2)(-1)-(0)(3)| \\
&
\end{aligned}
$$

Area of triangle pqo:

$p(3,-1)$	$q(0,2)$	
\downarrow	\downarrow	\downarrow
x_{1}	y_{1}	$x_{2} y_{2}$

$A_{2}=\frac{1}{2}|(3)(2)-(-1)(0)|$
$\Rightarrow A_{2}=\frac{1}{2}|6+0|=\frac{1}{2}|6|=\frac{1}{2}(6)$
$\therefore A_{2}=3$ square units
$\frac{A_{1}}{A_{2}}=\frac{1}{3} \Rightarrow A_{1}: A_{2}=1: 3$

