The Line (Q 2, Paper 2)

Lesson No. 7: Translations \& Symmetries

2006

2 (b) L is the line $3 x+2 y+c=0$.
(i) $(3,-1)$ is a point on L. Find the value of c.
(ii) The line K is parallel to L and passes through the point $(-2,5)$. Find the equation of K.
(iii) The lines L and K, together with the line $x=3$ and the y-axis, form a parallelogram. Find the co-ordinates of the vertices of the parallelogram.

Solution

2 (b) (i)
Is a point on a line?
To show a point is on a line, put the point into the equation.
You are told that $(3,-1)$ is on L. Therefore, you can substitute it in to find c. Replace x by 3 and y by -1 .
$(3,-1) \in L \Rightarrow 3(3)+2(-1)+c=0$
$\Rightarrow 9-2+c=0$
$\Rightarrow 7+c=0$
$\therefore c=-7$
2 (b) (ii)
Parallel lines have the same slope.

$$
K \| L \Rightarrow m_{1}=m_{2}
$$

Equation of $L: 3 x+2 y-7=0$

Slope: $m=-\left(\frac{a}{b}\right) \ldots5 \quad$ Remember it as: Slope $m=-\left(\frac{\text { Number in front of } x}{\text { Number in front of } y}\right)$
Slope of L : $m=-\frac{3}{2}$
Therefore, slope of K : $m=-\frac{3}{2}$
Equation of K : slope $m=-\frac{3}{2}$, point $\left(x_{1}, y_{1}\right)=(-2,5)$.
$\left(x_{1}, y_{1}\right)=(-2,5)$.
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-5=-\frac{3}{2}(x-(-2))$
$\Rightarrow 2(y-5)=-3(x+2)$
$\Rightarrow 2 y-10=-3 x-6$
$\therefore 3 x+2 y-4=0$

2 (b) (ii)

The y-axis has an equation $x=0$. This is parallel to the line $x=3$. You need to find out where the lines L and K intersect these lines.

Points of intersection of $L: 3 x+2 y-7=0$ with: $x=0$:
$3(0)+2 y-7=0 \Rightarrow 2 y=7$
$\Rightarrow y=\frac{7}{2} \Rightarrow\left(0, \frac{7}{2}\right)$ is a point of intersection.
$x=3$:
3(3) $+2 y-7=0 \Rightarrow 9+2 y=7$
$\Rightarrow 2 y=-2 \Rightarrow y=-1 \Rightarrow(0,-1)$ is a point of intersection.

Points of intersection of K : $3 x+2 y-4=0$ with:
$x=0$:

Vertical lines have equations where $x=$ constant. In particular, the y-axis has the equation $x=0$.
$3(0)+2 y-4=0 \Rightarrow 0+2 y=4$
$\Rightarrow y=2 \Rightarrow(0,2)$ is a point of intersection.
$x=3$:
3(3) $+2 y-4=0 \Rightarrow 9+2 y=4$
$\Rightarrow 2 y=-5 \Rightarrow y=-\frac{5}{2} \Rightarrow\left(3,-\frac{5}{2}\right)$ is a point of intersection.
The co-ordinates of the vertices of the parallelogram are: $(0,2),\left(3,-\frac{5}{2}\right),\left(0, \frac{7}{2}\right),(3,-1)$

1998

2 (b) $a(2,-1), b(-2,3), c(-1,-1)$ and $d(4,-6)$ are points.
(i) Show that $a b$ is parallel to $c d$.
(ii) Investigate if $a b c d$ is a parallelogram.

Give a reason for your answer.

Solution

2 (b) (i)

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \ldots \ldots .3 \quad \text { Remember it as: } \quad \text { Slope } m=\frac{\text { Difference in } y^{\prime} \mathrm{s}}{\text { Difference in } x^{\prime} \mathrm{s}}
$$

$a(2,-1)$	$b(-2,3)$		
\downarrow	\downarrow	\downarrow	\downarrow
x_{1}	y_{1}	x_{2}	y_{2}

Slope of $a b: m_{1}=\frac{3-(-1)}{-2-2}=\frac{3+1}{-4}=\frac{4}{-4}=-1$

$$
\left\lvert\, \begin{array}{cccc}
c(-1, & -1) & d(4, & -6) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} & y_{2}
\end{array}\right.
$$

Slope of $c d: m_{2}=\frac{-6-(-1)}{4-(-1)}=\frac{-6+1}{4+1}=\frac{-5}{5}=-1$

Parallel lines have the same slope.

$$
m_{1}=m_{2} \Rightarrow a b \| c d
$$

Cont....

2 (b) (ii)

To prove abcd is a parallelogram: Find the slopes of each side and show opposite sides have the same slopes.

You have shown in part (i) that $a b \| c d$.
To show $a b c d$ is a parallelogram you need to also show that $a d \| b c$.

Slope of $a d: m_{3}=\frac{-6-(-1)}{4-2}=\frac{-6+1}{4-2}=\frac{-5}{2}=-\frac{5}{2}$

Slope of $b c: m_{4}=\frac{-1-3}{-1-(-2)}=\frac{-1-3}{-1+2}=\frac{-4}{1}=-4$
$a d$ is not parallel to $b c$. Therefore, $a b c d$ is not a parallelogram.

1997

2 (c) K is the line which contains the points $a(0,4)$ and $b(3,0)$.
Find the equation of K.
N is the line which is perpendicular to K and which contains the origin.
Find the equation of N.
Investigate if b is the image of a under the axial symmetry in N.

Solution

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Remember it As:

Slope $m=\frac{\text { Difference in } y^{\prime} \text { s }}{\text { Difference in } x^{\prime} \text { s }}$

```
a(0,4) b(3, 0)
    \downarrow\downarrow \downarrow\downarrow
    \mp@subsup{x}{1}{}}\mp@subsup{y}{1}{}\quad\mp@subsup{x}{2}{}\mp@subsup{y}{2}{
```

Slope of $a b$: $m=\frac{0-4}{3-0}=\frac{-4}{3}=-\frac{4}{3}$

Equation of K : Point $a(4,0)=\left(x_{1}, y_{1}\right)$, slope $m=-\frac{4}{3}$
The equation of a line is a formula satisfied by every point (x, y) on the line.
Equation of a line:
$y-y_{1}=m\left(x-x_{1}\right)$

$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-4=-\frac{4}{3}(x-0)$
$\Rightarrow 3(y-4)=-4 x$
$\Rightarrow 3 y-12=-4 x$
$\Rightarrow 4 x+3 y-12=0$

Equation of N : Point $\left(x_{1}, y_{1}\right)=(0,0)$, slope $m=\frac{3}{4}$
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-0=\frac{3}{4}(x-0)$
$\Rightarrow 4 y=3 x$
$\therefore 3 x-4 y=0$
To answer the last part plot the points and lines to give you a better idea of how to proceed.

Axial Symmetry: This is the movement of a point perpendicular to a line and out the same distance at right angles to the line.

If b is the image of a under an axial symmetry in N, then the point of intersection of K and N must be the same as the midpoint of $[a b]$.

The formula for the midpoint, c, of the line segment [ab] is:

Midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
(2) $a\left(x_{1}, y_{1}\right) \quad c(x, y)$

Remember the midpoint formula as: Midpoint $=\left(\frac{\text { Add the } x^{\prime} \text { s }}{2}, \frac{\text { Add the } y^{\prime} \text { s }}{2}\right)$

$$
\begin{array}{cc}
a(0,4) & b(3,0) \\
\downarrow \downarrow & \downarrow \downarrow \\
x_{1} y_{1} & x_{2} y_{2}
\end{array} \quad \text { Midpoint }=\left(\frac{0+3}{2}, \frac{4+0}{2}\right)=\left(\frac{3}{2}, \frac{4}{2}\right)=\left(\frac{3}{2}, 2\right)
$$

Find the point of intersection of K and N

Intersecting Lines

To find out where two lines intersect, solve their equations simultaneously.

$$
\left.\begin{array}{rl}
4 x+3 y-12 & =0 \ldots(1)(\times 4) \\
3 x-4 y \quad & =0 \ldots(2)(\times 3)
\end{array} \longrightarrow \begin{array}{rl}
16 x+12 y-48 & =0 \\
9 x-12 y= & =0
\end{array}\right] 25 x=-48 \Rightarrow x=-\frac{48}{25} \begin{aligned}
25 x-48 & =0 \Rightarrow 2
\end{aligned}
$$

You can see the x value of the point of intersection does not match the the x value of the midpoint. Therefore, b is not an image of a under an axial symmetry in N.

