The Line (Q 2, Paper 2)

2003
2 (a) Find the distance between the two points $(3,2)$ and $(8,14)$.
(b) $a(-2,2), b(4,6)$ and $c(0,-4)$ are three points.
p is the midpoint of $[a b]$ and q is the midpoint of $[a c]$.
(i) Find the co-ordinates of p and the co-ordinates of q.
(ii) Plot a, b, c, p and q on a co-ordinate diagram on graph paper.

Show the line segments $[b c]$ and $[p q]$ on your diagram.
(iii) Using slopes, or otherwise, prove that $p q$ is parallel to $b c$.
(c) L is the line $3 x+2 y+12=0$.
K is the line that passes through the point $(7,3)$ and is perpendicular to L.
Find the equation of K and hence find the point of intersection of K and L.

Solution

2 (a)

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The distance between a and b is written as $|a b|$.
Remember the distance formula as:

$d=\sqrt{\left(\text { Difference in } x^{\prime} s\right)^{2}+\left(\text { Difference in } y^{\prime} s\right)^{2}}$

$$
\begin{aligned}
& |a b|=\sqrt{(8-3)^{2}+(14-2)^{2}} \\
& \Rightarrow|a b|=\sqrt{5^{2}+12^{2}}=\sqrt{25+144} \\
& \therefore \Rightarrow|a b|=\sqrt{169}=13
\end{aligned}
$$

2 (b) (i)

$$
\text { The formula for the midpoint, } c \text {, of the line }
$$ segment [ab] is:

Midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
(2) $a\left(x_{1}, y_{1}\right)$

Remember the midpoint formula as: Midpoint $=\left(\frac{\text { Add the } x^{\prime} \text { s }}{2}, \frac{\text { Add the } y^{\prime} \text { s }}{2}\right)$

Midpoint of $[a b]=\left(\frac{-2+4}{2}, \frac{2+6}{2}\right)=\left(\frac{2}{2}, \frac{8}{2}\right)=p(1,4)$

$$
\begin{array}{cccc}
a(-2, & 2) & c(0, & -4) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} & y_{2}
\end{array}
$$

2 (b) (ii)

2 (b) (iii)

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

3

Remember it as:
Slope $m=\frac{\text { Difference in } y^{\prime} s}{\text { Difference in } x^{\prime} s}$

$$
\begin{array}{ccc}
b(4,6) & c(0,-4) \\
\downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2}
\end{array} y_{2}
$$

$$
\begin{array}{cccc}
p(1,4) & q(-1, & -4) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} & y_{2}
\end{array}
$$

$$
\text { Slope of } p q: m=\frac{-1-4}{-1-1}=\frac{-5}{-2}=\frac{5}{2}
$$

As the slope of $b c$ and $p q$ are equal, lines $p q$ and $a b$ are parallel.
2 (c)
General form of a straight line
Every straight line can be written in the form: $a x+b y+c=0$.
You can read off the slope of a straight line from its equation.

$$
\text { Slope: } m=-\left(\frac{a}{b}\right) \ldots \ldots .
$$

Remember it as: Slope $m=-\left(\frac{\text { Number in front of } x}{\text { Number in front of } y}\right)$
$L: 3 x+2 y+12=0$
Slope of $L: m=-\frac{3}{2}$

Finding the perpendicular slope: Invert the slope and change its sign.

The equation of a line is a formula satisfied by every point (x, y) on the line.
Equation of a line:

$$
\begin{equation*}
y-y_{1}=m\left(x-x_{1}\right) \tag{4}
\end{equation*}
$$

Equation of K : Slope $m=\frac{2}{3}$, point $\left(x_{1}, y_{1}\right)=(7,3)$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& \Rightarrow y-3=\frac{2}{3}(x-7) \\
& \Rightarrow 3(y-3)=2(x-7) \\
& \Rightarrow 3 y-9=2 x-14 \\
& \therefore 2 x-3 y-5=0
\end{aligned}
$$

Intersecting Lines

To find out where two lines intersect, solve their equations simultaneously.

$$
\begin{aligned}
& 3 x+2 y+12=0 \ldots . .(\mathbf{1})(\times 3) \\
& 2 x-3 y-5=0 \ldots . .(2)(\times 2)
\end{aligned} \longrightarrow \begin{aligned}
& 9 x+6 y+36=0 \\
& \frac{4 x-6 y-10=0}{13 x+26=0} \Rightarrow 13 x=-26 \Rightarrow x=-2
\end{aligned}
$$

Substitute this value for x into Eqn. (1).

$$
\begin{aligned}
& 3(-2)+2 y+12=0 \Rightarrow-6+2 y+12=0 \\
& \Rightarrow 2 y+6=0 \\
& \Rightarrow 2 y=-6 \\
& \therefore y=-3
\end{aligned}
$$

Point of intersection: $(-2,-3)$

