The Line (Q 2, Paper 2)

2001
2 (a) The point $(t, 2 t)$ lies on the line $3 x+2 y+7=0$.
Find the value of t.
(b) $a(4,2), b(-2,0)$ and $c(0,4)$ are three points.
(i) Prove that $a c \perp b c$.
(ii) Prove that $|a c|=|b c|$.
(iii) Calculate the area of the triangle bac.
(iv) The diagonals of the square bahg intersect at c.

Find the co-ordinates of h and the co-ordinates of g.
(v) Find the equation of the line $b c$ and show that h lies on this line.

Solution

2 (a)
Is a point on a line?
To show a point is on a line, put the point into the equation.
Replace x by t and y by $2 t$.
$(t, 2 t) \in 3 x+2 y+7=0$
$\Rightarrow 3(t)+2(2 t)+7=0$
$\Rightarrow 3 t+4 t+7=0$
$\Rightarrow 7 t=-7$
$\therefore t=-1$
2 (b) (i)

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Remember it as:

$$
\text { Slope } m=\frac{\text { Difference in } y^{\prime} s}{\text { Difference in } x^{\prime} s}
$$

Slope of $a c: m_{1}=\frac{4-2}{0-4}=\frac{2}{-4}=-\frac{1}{2}$

Slope of $b c: m_{2}=\frac{4-0}{0-(-2)}=\frac{4}{2}=2$

Two lines are perpendicular if the product of their slopes is -1 .

$$
m_{1} \times m_{2}=\left(-\frac{1}{2}\right) \times 2=-1 \Rightarrow a c \perp b c
$$

$$
K \perp L \Rightarrow m_{1} \times m_{2}=-1
$$

2 (b) (ii)

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \ldots \ldots
$$

The distance between a and b is written as $|a b|$.
Remember the distance formula as:

$d=\sqrt{\left(\text { Difference in } x^{\prime} \mathrm{s}\right)^{2}+\left(\text { Difference in } y^{\prime} \mathrm{s}\right)^{2}}$

$$
b(-2,0) \quad c(0,4)
$$

$$
\downarrow \downarrow \quad \downarrow \downarrow
$$

$$
\begin{array}{lll}
x_{1} & y_{1} & x_{2} y_{2}
\end{array}
$$

$$
\begin{aligned}
& |a c|=\sqrt{(0-4)^{2}+(4-2)^{2}} \\
& \Rightarrow|a c|=\sqrt{(-4)^{2}+(2)^{2}}=\sqrt{16+4} \\
& \therefore|a c|=\sqrt{20} \\
& |b c|=\sqrt{(0-(-2))^{2}+(4-0)^{2}} \\
& \Rightarrow|b c|=\sqrt{(2)^{2}+(4)^{2}}=\sqrt{4+16} \\
& \therefore|b c|=\sqrt{20}
\end{aligned}
$$

$\therefore|a c|=|b c|$

2 (b) (iii) The area, A, of $\Delta a o b$ with vertices $o(0,0), a\left(x_{1}, y_{1}\right), b\left(x_{2}, y_{2}\right)$ is given by:

$$
A=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right| \ldots \ldots . .6
$$

Steps

1. Translate one point to $(0,0)$.
2. Do the same translation to the other two points.
3. Apply the formula.

$$
\begin{array}{lll}
a(4,2) & \rightarrow(6,2) & \text { Translate } b \text { to }(0,0) \text { by adding } 2 \text { to the } x \text { part and adding } \\
b(-2,0) & \rightarrow(0,0) & 0 \text { to the } y \text { part. Do the same to the other two points. } \\
c(0,4) & \rightarrow(2,4)
\end{array}
$$

$$
\begin{array}{|cc|}
\hline(6,2) & (2,4) \\
\downarrow \downarrow & \downarrow \downarrow \frac{1}{2}|(6)(4)-(2)(2)| \\
x_{1} y_{1} & x_{2} y_{2} \\
& \Rightarrow A=\frac{1}{2}|24-4|=\frac{1}{2}|20| \\
& \therefore A=10 \text { square units }
\end{array}
$$

2 (b) (iv)

The diagonals of a square bisect each other. To find out the co-ordinates of g and h send points b and a through c by a central symmetry.

To go from b to c, you add 2 to the x-coordinate and 4 to the y-coordinate. Therefore, to go from c to h, you do exactly the same.
$\therefore b(-2,0) \rightarrow c(0,4) \rightarrow h(2,8)$
Note: c is the midpoint of [bh].

To go from a to c, you take away 4 from the x-coordinate and add 2 to the y-coordinate.
Therefore, to go from c to g, you do exactly the same.
$\therefore a(4,2) \rightarrow c(0,4) \rightarrow g(-4,6)$

Ans: $g(-4,6), h(2,8)$

2 (b) (v)
The equation of a line is a formula satisfied by every point (x, y) on the line.
Equation of a line:
$y-y_{1}=m\left(x-x_{1}\right)$ 4

Equation of $b c$: Point $c(0,4)$, slope $m=2$ [found in 2 (b) (i)]
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-4=2(x-0)$
$\Rightarrow y-4=2 x$
$\therefore 2 x-y+4=0$
Is a point on a line?
To show a point is on a line, put the point into the equation.
$h(2,8) \in b c$?
2(2) - (8) + 4
$=4-8+4$
$=0 \Rightarrow h(2,8) \in b c$

