COMPLEX NUMBERS (Q 4, PAPER 1)

LESSON No. 7: EQUATIONS II

2006

4 (b) (i) Solve $z^2 - 4z + 29 = 0$.

Write your answers in the form x + yi where $x, y \in \mathbf{R}$.

SOLUTION

$$z^{2} - 4z + 29 = 0$$

$$\therefore z = \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(1)(29)}}{2(1)}$$

$$=\frac{4\pm\sqrt{16-116}}{2}=\frac{4\pm\sqrt{-100}}{2}$$

$$= \frac{4 \pm 10i}{2} = 2 \pm 5i$$

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \dots$$

$$a = 1$$

$$b = -4$$

$$c = 29$$

2004

4 (b) (ii) Solve $z^2 - 10z + 26 = 0$.

Write your answers in the form a + bi, where $a, b \in \mathbf{R}$.

SOLUTION

$$z^2 - 10z + 26 = 0$$

$$\therefore z = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(26)}}{2(1)}$$

$$= \frac{10 \pm \sqrt{100 - 104}}{2} = \frac{10 \pm \sqrt{-4}}{2} = \frac{10 \pm 2i}{2}$$
$$= 5 \pm i$$

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \dots$$

$$a = 1$$

$$b = -10$$

$$c = 26$$

2002

- 4 (c) p and k are real numbers such that p(2+i)+8-ki=5k-3-i.
 - (i) Find the value of p and the value of k.
 - (ii) Investigate if p + ki is a root of the equation $z^2 4z + 13 = 0$.

SOLUTION

4 (c) (i)

For all equations you can equate (set equal) the real parts and the imaginary parts.

$$p(2+i)+8-ki = 5k-3-i$$

$$\Rightarrow 2p+pi+8-ki = 5k-3-i$$

$$\Rightarrow (2p+8)+(p-k)i = (5k-3)-i$$

Equate the real parts: $2p + 8 = 5k - 3 \Rightarrow 2p - 5k = -11....(1)$

Equate the imaginary parts: p - k = -1....(2)

Solve equations (1) and (2) simultaneously.

$$\begin{array}{ccc}
2p - 5k = -11....(1) \\
p - k &= -1.....(2)(\times -2)
\end{array}
\longrightarrow
\begin{array}{c}
2p - 5k = -11 \\
-2p + 2k = 2 \\
\hline
-3k = -9 \Rightarrow k = 3
\end{array}$$

Substitute this value into Eqn. (2): $p-(3) = -1 \Rightarrow p-3 = -1 \Rightarrow p=2$

4 (c) (ii)

$$p + ki = 2 + 3i$$

To show 2 + 3i is a root of $z^2 - 4z + 13 = 0$, substitute 2 + 3i in for z. If you get an answer of zero, it is a root.

$$z^{2}-4z+13$$

$$= (2+3i)^{2}-4(2+3i)+13$$

$$= 4+12i+9i^{2}-8-12i+13$$

$$= 4-9-8+13=0$$

Therefore, 2 + 3i is a root.

1998

4 (b) (i) Verify that 4-3i is a root of

$$z^2 - 8z + 25 = 0$$

and write down the other root.

SOLUTION

If a + bi is a root of a quadratic equation with all real coefficients, then its conjugate, a - bi, is also a root.

To show that that 4-3i is a root of $z^2-8z+25=0$ substitute it in for z and show that you get zero.

$$(4-3i)^2-8(4-3i)+25$$

$$=(4-3i)(4-3i)-8(4-3i)+25$$

$$=16-12i-12i+9i^2-32+24i+25$$

$$=16-12i-12i-9-32+24i+25$$

=0

Therefore, 4-3i is a root. The other root is 4+3i.

1996

4 (c) Let z = 2 - i be one root of the equation $z^2 + pz + q = 0$, $p, q \in \mathbb{R}$. Find the value of p and the value of q.

SOLUTION

If a + bi is a root of a quadratic equation with all real coefficients, then its conjugate, a - bi, is also a root.

If 2-i is a root of $z^2 + pz + q = 0$, then 2+i is also a root.

Substitute one of the roots into the quadratic.

$$(2-i)^2 + p(2-i) + q = 0$$

$$\Rightarrow$$
 $(2-i)(2-i) + p(2-i) + q = 0$

$$\Rightarrow 4 - 2i - 2i + i^2 + 2p - pi + q = 0$$

$$\Rightarrow 4 - 4i - 1 + 2p - pi + q = 0$$

 \Rightarrow (3+2p+q)+(-p-4)i=0+0i [Gather up the real parts and the imaginary parts.]

Equate the imaginary parts: $-p-4=0 \Rightarrow p=-4$

Equate the real parts: $3+2p+q=0 \Rightarrow 3+2(-4)+q=0 \Rightarrow 3-8+q=0$

$$\Rightarrow$$
 -5 + $q = 0 \Rightarrow q = 5$