Complex Numbers (Q 4, Paper 1)

Lesson No. 2: Powers of i

2006

4 (b) (ii) Write in its simplest form $i\left(i^{4}+i^{5}+i^{6}\right)$.

Solution

$i\left(i^{4}+i^{5}+i^{6}\right)$	Powers of i $=i^{5}+i^{6}+i^{7}$ $i=\sqrt{-1}=i$ $=i+i^{2}+i^{3}$ $=i-1-i=-1$
$i^{2}=-1$	
$i^{3}=-i$	
$i^{4}=1$	

$\boldsymbol{i}^{\text {power }}=\boldsymbol{i}$ remainder when power is divided by 4
When you see a power of i, divide the power by 4 and take the remainder. Now use the table on the left to write your answer.
Powers of i repeat in groups of four. You always get one of 4 answers: $i,-1,-i, 1$

2003

4 (a) Given that $i^{2}=-1$, find the value of:
(i) i^{8}
(ii) i^{7}.

Solution

$$
\begin{aligned}
& \text { Powers of } i \\
& i=\sqrt{-1}=i \\
& i^{2}=-1 \\
& i^{3}=-i \\
& i^{4}=1
\end{aligned}
$$

$\boldsymbol{i}^{\text {power }}=\boldsymbol{i}$ remainder when power is divided by $\mathbf{4}$
When you see a power of i, divide the power by 4 and take the remainder. Now use the table on the left to write your answer.
Powers of i repeat in groups of four. You always get one of 4 answers: $i,-1,-i, 1$

4 (a) (i)
$i^{8}=i^{0}=1$

4 (a) (ii)

$i^{7}=i^{3}=-i$

1998

4 (a) Let $w=2 i$, where $i^{2}=-1$. Plot
(i) w^{2},
(ii) w^{3}
on an Argand diagram.
Solution

4 (a) (i)	
$w^{2}=(2 i)^{2}=4 i^{2}=-4=-4+0 i$	Powers of i $i=\sqrt{-1}=i$ 4 (a) (ii) $w^{3}=(2 i)^{3}=8 i^{3}=-8 i=0-8 i$
$i^{3}=-i$	
$i^{4}=1$	

