COMPLEX NUMBERS (Q 4, PAPER 1)

1998

- (a) Let w = 2i, where $i^2 = -1$. Plot
 - (i) w^2 ,
 - (ii) w^3

on an Argand diagram.

(b) (i) Verify that 4-3i is a root of

$$z^2 - 8z + 25 = 0$$

and write down the other root.

(ii) Investigate if

$$|2+14i| = |10(1-i)|.$$

- (c) Let u = 2 i.
 - (i) Express $u + \frac{1}{u}$ in the form a + bi, $a, b \in \mathbb{R}$.
 - (ii) Hence, solve

$$k(u + \frac{1}{u}) + ti = 18$$

for real *k* and real *t*.

SOLUTION

4 (a) (i)

$$w^2 = (2i)^2 = 4i^2 = -4 = -4 + 0i$$

4 (a) (ii)

$$w^{3} = (2i)^{3} = 8i^{3} = -8i = 0 - 8i$$

Powers of i

$$i^2 = -1$$

$$i^3 = -i$$

$$i^4 = 1$$

4 (b) (i)

If a + bi is a root of a quadratic equation with all real coefficients, then its conjugate, a-bi, is also a root.

To show that that 4-3i is a root of $z^2-8z+25=0$ substitute it in for z and show that you get zero.

$$(4-3i)^2-8(4-3i)+25$$

$$= (4-3i)(4-3i)-8(4-3i)+25$$

$$=16-12i-12i+9i^2-32+24i+25$$

$$=16-12i-12i-9-32+24i+25$$

=0

Therefore, 4-3i is a root. The other root is 4+3i.

4 (b) (ii)

Finding the modulus:

$$z = a + bi \Rightarrow |z| = \sqrt{a^2 + b^2} \qquad 2$$

LHS

$$|2+14i| = \sqrt{2^2 + 14^2}$$
$$= \sqrt{4+196} = \sqrt{200}$$
$$= \sqrt{100 \times 2} = 10\sqrt{2}$$

$$|10(1-i)| = |10-10i|$$

$$= \sqrt{10^2 + (-10)^2}$$

$$= \sqrt{100 + 100} = \sqrt{200}$$

$$= \sqrt{100 \times 2} = 10\sqrt{2}$$

Therefore, the statement is true.

4 (c) (i)

DIVISION: Multiply above and below by the conjugate of the bottom.

$$u + \frac{1}{u} = 2 - i + \frac{1}{2 - i}$$

$$=2-i+\frac{1}{(2-i)}\times\frac{(2+i)}{(2+i)}$$
 [Multiply above and below by the conjugate of the bottom.]

$$=2-i+\frac{2+i}{4+2i-2i-i^2}$$
 [Multiply out the brackets.]

=
$$2 - i + \frac{2 + i}{4 + 1} = 2 - i + \frac{2 + i}{5}$$
 [Tidy up using the fact that $i^2 = -1$.]

=
$$2 - i + \frac{2}{5} + \frac{1}{5}i$$
 [Divide the 5 on the bottom into each term above.]

$$=\frac{12}{5} - \frac{4}{5}i$$
 [Add the real parts and the imaginary parts.]

4 (c) (ii)

For all equations you can equate (set equal) the real parts and

$$k\left(u+\frac{1}{u}\right)+ti=18$$
 [Write 18 as a complex number.]

$$\Rightarrow k(\frac{12}{5} - \frac{4}{5}i) + ti = 18 + 0i$$

$$\Rightarrow \frac{12}{5}k - \frac{4}{5}ki + ti = 18 + 0i$$

$$\Rightarrow \frac{12}{5}k + (-\frac{4}{5}k + t)i = 18 + 0i$$
 [Gather up the real parts and the imaginary parts.]

Equating the real parts: $\frac{12}{5}k = 18 \Rightarrow k = 18 \times \frac{5}{12} = \frac{15}{2}$

Equating the imaginary parts: $-\frac{4}{5}k + t = 0 \Rightarrow -\frac{4}{5}(\frac{15}{2}) + t = 0 \Rightarrow -6 + t = 0 \Rightarrow t = 6$