Complex Numbers (Q 4, Paper 1)

2002
4 (a) Given that $i^{2}=-1$, simplify

$$
2(3-i)+i(4+5 i)
$$

and write your answer in the form $x+y i$ where $x, y \in \mathbf{R}$.
(b) Let $z=5+4 i$.
(i) Plot z and \bar{z} on an Argand diagram, where \bar{z} is the complex conjugate of z.
(ii) Calculate $z \bar{z}$.
(iii) Express $\frac{Z}{\bar{Z}}$ in the form $u+v i$ where $u, v \in \mathbf{R}$.
(c) p and k are real numbers such that $p(2+i)+8-k i=5 k-3-i$.
(i) Find the value of p and the value of k.
(ii) Investigate if $p+k i$ is a root of the equation $z^{2}-4 z+13=0$.

Answers

4 (a) $1+2 i$
(b) (i)

(iii) $\frac{9}{41}+\frac{40}{41} i$
(c) (i) $p=2, k=3$ (ii) Yes

