The Circle (Q 3, Paper 2)

Lesson No. 6: Right-Angled triangles inside circles

2006

3 (b) The vertices of a right-angled triangle are $p(1,1), q(5,1)$ and $r(1,4)$.
The circle K passes through the points p, q and r.
(i) On a coordinate diagram, draw the triangle pqr.

Mark the point c, the centre of K, and draw K.
(ii) Find the equation of K.
(iii) Find the equation of the image of K under the translation $(5,1) \rightarrow(1,4)$.

Solution

3 (b) (i)

3 (b) (ii)
The angle in a semi-circle at c is a right-angle $\left(90^{\circ}\right)$. To prove this you need to show that $a c$ is perpendicular to $b c$.

Slope of $a c \times$ Slope of $b c=-1 \Rightarrow a c \perp b c$
This means that $[a b]$ is a diameter of a circle.

The centre c is the midpoint of $[r q]$.
The formula for the midpoint, c, of the line segment [ab] is:

$$
\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$2 a\left(x_{1}, y_{1}\right)$

Remember the midpoint formula as: Midpoint $=\left(\frac{\text { Add the } x^{\prime} \text { s }}{2}, \frac{\text { Add the } y^{\prime} \mathrm{s}}{2}\right)$

$$
\begin{array}{rr}
r(1,4) & q(5,1) \\
\downarrow \downarrow & \downarrow \downarrow \\
x_{1} y_{1} & x_{2} y_{2}
\end{array}
$$

Midpoint of $[r q]=\left(\frac{1+5}{2}, \frac{4+1}{2}\right)=\left(\frac{6}{2}, \frac{5}{2}\right)=c\left(3, \frac{5}{2}\right)$

The radius r is the distance $|c q|$.

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \ldots \ldots
$$

The distance between a and b is written as $|a b|$.
REMEMBER THE DISTANCE FORMULA AS:

$$
d=\sqrt{\left(\text { Difference in } x^{\prime} \mathrm{s}\right)^{2}+\left(\text { Difference in } y^{\prime} \mathrm{s}\right)^{2}}
$$

$$
\left.\begin{array}{cc|}
c c \mid \\
c\left(3, \frac{5}{2}\right) & q(5,1) \\
\downarrow \downarrow & \downarrow \downarrow \\
x_{1} y_{1} & x_{2} y_{2}
\end{array}\right] \Rightarrow \begin{aligned}
& |c q|=r=\sqrt{(5-3)^{2}+\left(1-\frac{5}{2}\right)^{2}} \\
&
\end{aligned}
$$

Circle C with centre (h, k), radius r.

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{2}
\end{equation*}
$$

To get the centre: Change the sign of the number inside each bracket. To get the radius: Take the square root of the number on the right.

Equation of K : centre $c\left(3, \frac{5}{2}\right), r=\frac{5}{2}$

$$
\begin{aligned}
& K:(x-3)^{2}+\left(y-\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2} \\
& \therefore(x-3)^{2}+\left(y-\frac{5}{2}\right)^{2}=\frac{25}{4}
\end{aligned}
$$

3 (b) (iii)

The circle K remains unchnged under a translation. Its location changes. Find its new centre as shown on the right.
Image of K : centre $\left(-1, \frac{11}{2}\right), r=\frac{5}{2}$
$(x+1)^{2}+\left(y-\frac{11}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}$
$\therefore(x+1)^{2}+\left(y-\frac{11}{2}\right)^{2}=\frac{25}{4}$

2004

3 (b) A circle has equation $x^{2}+y^{2}=13$.
The points $a(2,-3), b(-2,3)$ and $c(3,2)$ are on the circle.
(i) Verify that $[a b]$ is a diameter of the circle.
(ii) Verify that $\angle a c b$ is a right angle.

Solution

3 (b) (i)
To show a line segment is a diameter of a circle:
The midpoint of a diameter is the centre of a circle.
The centre of the circle $x^{2}+y^{2}=13$ is $(0,0)$.
The formula for the midpoint, c, of the line segment $[a b]$ is:

$$
\text { Midpoint } \left.=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \right\rvert\, \ldots \ldots .2 a\left(x_{1}, y_{1}\right)
$$

Remember the midpoint formula as: Midpoint $=\left(\frac{\text { Add the } x^{\prime} \text { s }}{2}, \frac{\text { Add the } y^{\prime} \text { s }}{2}\right)$

$a(2$,	$-3)$	$b(-2$,	$3)$
\downarrow	\downarrow	\downarrow	\downarrow
x_{1}	y_{1}	x_{2}	y_{2}

Midpoint of $[a b]=\left(\frac{2-2}{2}, \frac{-3+3}{2}\right)=\left(\frac{0}{2}, \frac{0}{2}\right)=(0,0)$
The midpoint of $[a b]$ is the centre of the circle. Therefore, [ab] is a diameter of the circle.

3 (b) (ii)
The angle in a semi-circle at c is a right-angle $\left(90^{\circ}\right)$. To prove this you need to show that $a c$ is perpendicular to $b c$.

$$
\text { Slope of } a c \times \text { Slope of } b c=-1 \Rightarrow a c \perp b c
$$

This means that $[a b]$ is a diameter of a circle.

You can do this 3 ways:

1. Find the slope of $a c$ and $b c$ and show they are perpendicular.
2. Find the lengths of the 3 sides and apply Pythagoras' theorem.
3. Show c is on the circle. Any angle standing on the diameter is a right angle. This is my favourite and by far the quickest.
$c(3,2) \in x^{2}+y^{2}=13$?
$(3)^{2}+(2)^{2}=9+4$
$=13 \Rightarrow x^{2}+y^{2}=13$
$\therefore \angle a c b$ is a right-angle.

2002

3 (c) $a(-5,1), b(3,7)$ and $c(9,-1)$ are three points.
(i) Show that the triangle $a b c$ is right-angled.
(ii) Hence, find the centre of the circle that passes through a, b and c and write down the equation of the circle.

Solution

3 (c) (i)

Find the slope of all 3 sides and show that two of the sides are perpendicular.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \ldots \ldots .3 \quad \begin{aligned}
& \text { REMEMBER IT AS: } \\
& \text { Slope } m=\frac{\text { Difference in } y^{\prime} \mathrm{s}}{\text { Difference in } x^{\prime} \mathrm{s}}
\end{aligned}
$$

$$
\begin{array}{ccc}
a(-5,1) & b(3,7) \\
\downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} \\
\hline
\end{array} y_{2} .
$$

Slope of $a b: m_{1}=\frac{7-1}{3-(-5)}=\frac{6}{3+5}=\frac{6}{8}=\frac{3}{4}$

$$
\begin{array}{ccc}
a(-5,1) & c(9, & -1) \\
\downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} \\
y_{2}
\end{array}
$$

Slope of $a c: m_{2}=\frac{-1-1}{9-(-5)}=\frac{-2}{9+5}=\frac{-2}{14}=-\frac{1}{7}$

$$
\begin{array}{cccc}
b(3,7) & c(9, & -1) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2} & y_{2}
\end{array}
$$

Slope of $b c$: $m_{3}=\frac{-1-7}{9-3}=\frac{-8}{6}=-\frac{4}{3}$

> Two lines are perpendicular if the product of their slopes is -1 .

$$
m_{1} \times m_{3}=\left(\frac{3}{4}\right)\left(-\frac{4}{3}\right)=-1 \Rightarrow a b \perp b c
$$

Therefore, the triangle $a b c$ is right-angled with the right angle at b.
3 (c) (ii)

The angle in a semi-circle at b is a right-angle $\left(90^{\circ}\right)$. This means that $[a c]$ is a diameter of a circle.

The centre o is the midpoint of $a c$.

The formula for the midpoint, c, of the line segment [ab] is:

$$
\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

2

Remember the midpoint formula as: Midpoint $=\left(\frac{\text { Add the } x^{\prime} \text { s }}{2}, \frac{\text { Add the } y \text { 's }}{2}\right)$

Cont....

$$
\begin{array}{rcc|}
a(-5,1) & c(9,-1) \\
\downarrow & \downarrow & \downarrow \\
x_{1} & y_{1} & x_{2}
\end{array} y_{2} . \quad \text { Midpoint } o=\left(\frac{-5+9}{2}, \frac{1-1}{2}\right)=\left(\frac{4}{2}, \frac{0}{2}\right)=(2,0)
$$

The radius is the distance from the centre o to any vertex on the triangle, say $b(3,7)$.

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \ldots \ldots .
$$

The distance between a and b is written as $|a b|$.
Remember the distance formula as:

$$
d=\sqrt{\left(\text { Difference in } x^{\prime} \mathrm{s}\right)^{2}+\left(\text { Difference in } y^{\prime} \mathrm{s}\right)^{2}}
$$

$$
\begin{array}{|cc|}
\begin{array}{ccc}
o(2,0) & b(3,7) \\
\downarrow \downarrow & \downarrow \downarrow \\
x_{1} y_{1} & x_{2} y_{2}
\end{array} & \begin{aligned}
& \Rightarrow|o b|=\sqrt{(1)^{2}+(7)^{2}} \\
& \Rightarrow|o b|=\sqrt{1+49} \\
& \therefore r=\sqrt{50}
\end{aligned}
\end{array}
$$

Equation of the circle: centre $(h, k)=(2,0), r=\sqrt{50}$

Circle C with centre (h, k), radius r.

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{2}
\end{equation*}
$$

To get the centre: Change the sign of the number inside each bracket.
To get the radius: Take the square root of the number on the right.
$(x-h)^{2}+(y-k)^{2}=r^{2}$
$\Rightarrow(x-2)^{2}+(y-0)^{2}=(\sqrt{50})^{2}$
$\therefore(x-2)^{2}+y^{2}=50$

