The Circle (Q 3, Paper 2)

Lesson No. 1: The Simple Circle

2007

3 (a) The circle C has centre $(0,0)$ and radius 4.
(i) Write down the equation of C.
(ii) Verify that the point $(3,2)$ lies inside the circle C.

Solution

3 (a) (i)
Centre (0,0), $r=4$
Circle C: $x^{2}+y^{2}=4^{2} \Rightarrow x^{2}+y^{2}=16$

Circle C with centre $(0,0)$, radius r.

$$
x^{2}+y^{2}=r^{2}
$$

$$
1
$$

3 (a) (ii)

Is a point on a circle, inside a circle or outside a circle? Substitute the point into the circle.
On the circle: Both sides are equal.
Inside the circle: The left hand side is less than the right hand side. Outside the circle: The left hand side is greater than the right hand side.

To show $(3,2)$ is inside C :
$(3)^{2}+(2)^{2}=9+4=13<16 \Rightarrow(3,2)$ is inside C.

2005

3 (a) The circle C has equation $x^{2}+y^{2}=49$.
(i) Write down the centre and the radius of C.
(ii) Verify that the point $(5,-5)$ lies outside the circle C.

Solution

3 (a) (i)
Centre (0,0), radius $r=\sqrt{49}=7$

Circle C with centre (0,0), radius r.

3 (a) (ii)
Is A point on a circle, inside a circle or outside a circle?
Substitute the point into the circle.
On the circle: Both sides are equal.
Inside the circle: The left hand side is less than the right hand side.
Outside the circle: The left hand side is greater than the right hand side.
To show that $(5,-5)$ lies outside C :
$C: x^{2}+y^{2}=49$
$\Rightarrow(5)^{2}+(-5)^{2}=25+25$
$=50>49 \Rightarrow(5,-5)$ lies outside C.

2004

3 (a) The circle C has equation $x^{2}+y^{2}=36$.
(i) Write down the radius of C.
(ii) The radius of another circle is twice the radius of C.

The centre of this circle is $(0,0)$. Write down its equation.

Solution

3 (a) (i)
$x^{2}+y^{2}=36 \Rightarrow r=\sqrt{36}=6$
3 (a) (ii)

Circle C with centre $(0,0)$, radius r.
$x^{2}+y^{2}=r^{2}$
1

New circle: centre (0,0), $r=12$
$x^{2}+y^{2}=12^{2} \Rightarrow x^{2}+y^{2}=144$

2003

3 (a) The circle C has equation $x^{2}+y^{2}=25$.
(i) Verify that the point $(-4,3)$ is on the circle C.
(ii) Write down the coordinates of a point that lies outside C and give a reason for your answer.

Solution

3 (a) (i)
Is a point on a circle, inside a circle or outside a circle?
Substitute the point into the circle.
On the circle: Both sides are equal.
Inside the circle: The left hand side is less than the right hand side.
Outside the circle: The left hand side is greater than the right hand side.
$(-4,3) \in x^{2}+y^{2}=25$?
$(-4)^{2}+(3)^{2}=16+9$
$=25 \Rightarrow(-4,3) \in x^{2}+y^{2}=25$

3 (a) (ii)

You need to pick a value of x and a value of y such that when you put it into the equation of the circle the left hand side is greater than 25.
$(4,5)$ is such a number because $(4)^{2}+(5)^{2}=16+25=41>25$.

2002

3 (a) Write down the coordinates of any three points that lie on the circle with equation $x^{2}+y^{2}=100$.

Solution

Is A POINT ON A CIRCLE, INSIDE A CIRCLE OR OUTSIDE A CIRCLE?
Substitute the point into the circle.
On the circle: Both sides are equal.
Inside the circle: The left hand side is less than the right hand side.
Outside the circle: The left hand side is greater than the right hand side.
You need to pick values of x and y which when you put them into the equation you get 100 . $(6,8)$ is a point on the circle because $(6)^{2}+(8)^{2}=36+64=100$.
$(8,6)$ is a point on the circle because $(8)^{2}+(6)^{2}=64+36=100$.
$(10,0)$ is a point on the circle because $(10)^{2}+(0)^{2}=100+0=100$.

2001

3 (c) C is a circle with centre $(0,0)$. It passes through the point $(1,-5)$.
(i) Write down the equation of C.
(ii) The point (p, p) lies inside C where $p \in \mathbf{Z}$.

Find all the possible values of p.

Solution

3 (c) (i)

Circle C with centre $(0,0)$, radius r.

Find the radius by finding the distance between the centre $(0,0)$ and the point on the circle (1, -5).

$$
\begin{equation*}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{1}
\end{equation*}
$$

The distance between a and b is written as $|a b|$.
Remember the distance formula as:

$$
d=\sqrt{\left(\text { Difference in } x^{\prime} \mathrm{S}\right)^{2}+\left(\text { Difference in } y^{\prime} \mathrm{S}\right)^{2}}
$$

$$
\begin{aligned}
& r=\sqrt{(1-0)^{2}+(-5-0)^{2}} \\
& \Rightarrow r=\sqrt{1^{2}+(-5)^{2}}=\sqrt{1+25} \\
& \therefore r=\sqrt{26}
\end{aligned}
$$

Equation of C : Centre (0,0), $r=\sqrt{26}$
$C: x^{2}+y^{2}=(\sqrt{26})^{2} \Rightarrow x^{2}+y^{2}=26$

3 (c) (ii)

Do this by inspection. p is an integer which is a whole number (positive and negative.)
Is a point on a circle, inside a circle or outside a circle?
Substitute the point into the circle.
On the circle: Both sides are equal.
Inside the circle: The left hand side is less than the right hand side.
Outside the circle: The left hand side is greater than the right hand side.
$p=0:(0,0) \Rightarrow(0)^{2}+(0)^{2}=0<26 \Rightarrow(0,0)$ is inside the circle.
$p=1:(1,1) \Rightarrow(1)^{2}+(1)^{2}=1+1=2<26 \Rightarrow(1,1)$ is inside the circle.
$p=-1:(-1,-1) \Rightarrow(-1)^{2}+(-1)^{2}=1+1=2<26 \Rightarrow(-1,-1)$ is inside the circle.
$p=2:(2,2) \Rightarrow(2)^{2}+(2)^{2}=4+4=8<26 \Rightarrow(2,2)$ is inside the circle.
$p=-2:(-2,-2) \Rightarrow(-2)^{2}+(-2)^{2}=4+4=8<26 \Rightarrow(-2,-2)$ is inside the circle.
$p=3:(3,3) \Rightarrow(3)^{2}+(3)^{2}=9+9=18<26 \Rightarrow(3,3)$ is inside the circle.
$p=-3:(-3,-3) \Rightarrow(-3)^{2}+(-3)^{2}=9+9=18<26 \Rightarrow(-3,-3)$ is inside the circle.
$p=4:(4,4) \Rightarrow(4)^{2}+(4)^{2}=16+16=32>26 \Rightarrow(4,4)$ is outside the circle.
$p=-4:(-4,-4) \Rightarrow(-4)^{2}+(-4)^{2}=16+16=32>26 \Rightarrow(-4,-4)$ is outside the circle.
All whole numbers of p between -3 and 3 give rise to points inside the circle.

Another way:

Find out the values of p for which (p, p) is on the circle.
$(p, p) \in x^{2}+y^{2}=26 \Rightarrow(p)^{2}+(p)^{2}=26$
$\Rightarrow 2 p^{2}=26$
$\Rightarrow p^{2}=13$
$\therefore p= \pm \sqrt{13} \approx \pm 3.6$
Therefore, the point (p, p) is inside the circle for values of p between $-\sqrt{13}$ and $\sqrt{13}$.
Therefore, the point (p, p) is inside the circle for whole number values of p between -3 and 3.

Ans: $p=\{-3,-2,-1,0,1,2,3\}$

2000

3 (a) The circle C has equation $x^{2}+y^{2}=16$.
(i) Write down the length of the radius of C.
(ii) Show, by calculation, that the point $(3,1)$ is inside the circle.

Solution

3 (a) (i)
$C: x^{2}+y^{2}=16$
$\Rightarrow r=\sqrt{16}=4$

Circle C with centre $(0,0)$, radius r.
$x^{2}+y^{2}=r^{2}$
1

3 (a) (ii)
Is A POINT ON A CIRCLE, INSIDE A CIRCLE OR OUTSIDE A CIRCLE?
Substitute the point into the circle.
On the circle: Both sides are equal.
Inside the circle: The left hand side is less than the right hand side.
Outside the circle: The left hand side is greater than the right hand side.
$(3)^{2}+(1)^{2}=9+1$
$=10<16 \Rightarrow(3,1)$ is inside the circle.

1999

3 (a) C is a circle with centre $(0,0)$ passing through the point $(8,6)$.
Find
(i) the radius length of C
(ii) the equation of C.

Solution

3 (a) (i)

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \ldots \ldots .
$$

The distance between a and b is written as $|a b|$.
REMEMBER THE DISTANCE FORMULA AS:

$$
d=\sqrt{\left(\text { Difference in } x^{\prime} \mathrm{s}\right)^{2}+\left(\text { Difference in } y^{\prime} \mathrm{s}\right)^{2}}
$$

$(0,0)$	$(8,6)$			
\downarrow	\downarrow			
$\downarrow \downarrow$				
x_{1}	y_{1}	$x_{2} y_{2} \quad$		$\Rightarrow r=\sqrt{(8-0)^{2}+(6-0)^{2}}$
:---	:---			
	$\therefore r=\sqrt{8^{2}+6^{2}}=\sqrt{64+36}$			

3 (a) (ii)

Equation of C : centre (0,0), $r=10$
$C: x^{2}+y^{2}=100$

Circle C with centre $(0,0)$, radius r.

$$
x^{2}+y^{2}=r^{2}
$$

1

1998

3 (a) A circle C, with centre $(0,0)$, passes through the point $(4,-3)$.
(i) Find the length of the radius of C.
(ii) Show, by calculation, that the point $(6,-1)$ lies outside C.

Solution

3 (a) (i)

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

1

The distance between a and b is written as $|a b|$.
Remember the distance formula as:

$$
d=\sqrt{\left(\text { Difference in } x^{\prime} \mathrm{s}\right)^{2}+\left(\text { Difference in } y^{\prime} \mathrm{s}\right)^{2}}
$$

$$
\begin{array}{ccc}
\begin{array}{ccc}
(0,0) & (4,-3) & \\
\downarrow \downarrow \downarrow & \downarrow & \downarrow \\
x_{1} y_{1} & x_{2} & y_{2}
\end{array} & \Rightarrow r=\sqrt{(4-0)^{2}+(-3-0)^{2}} \\
& \therefore r=\sqrt{(4)^{2}+(-3)^{2}}=\sqrt{16+9}=5
\end{array}
$$

3 (a) (ii)

You can show that the distance d from the centre $(0,0)$ to $(6,-1)$ is greater than the radius.

$$
\begin{array}{ll}
\begin{array}{ccc}
\begin{array}{ccc}
(0,0) & (6,-1) \\
\downarrow \downarrow & \downarrow & \downarrow \\
x_{1} y_{1} & x_{2} & y_{2}
\end{array} & d=\sqrt{(6-0)^{2}+(-1-0)^{2}} \\
& \therefore d=\sqrt{(6)^{2}+(-1)^{2}}=\sqrt{36+1} \\
d>r \text { as } \sqrt{37}>\sqrt{25} . & \therefore d=\sqrt{37}
\end{array} \\
\end{array}
$$

1996

3 (a) The equation of a circle is $x^{2}+y^{2}=36$.
(i) Write down its radius length.
(ii) Verify, by calculation, that the point $(2,3)$ is inside the circle.

Solution

$$
\begin{aligned}
& 3 \text { (a) (i) } \\
& x^{2}+y^{2}=36 \\
& \Rightarrow r=\sqrt{36}=6
\end{aligned}
$$

Circle C with centre $(0,0)$, radius r.

$$
x^{2}+y^{2}=r^{2}
$$

1

3 (a) (ii)
Is a point on a circle, inside a circle or outside a circle?
Substitute the point into the circle.
On the circle: Both sides are equal.
Inside the circle: The left hand side is less than the right hand side.
Outside the circle: The left hand side is greater than the right hand side.
$(2,3): x^{2}+y^{2}=36$
$\Rightarrow(2)^{2}+(3)^{2}=4+9$
$=13<36 \Rightarrow(2,3)$ is inside the circle.

