The Circle (Q 3, Paper 2)

2004
3 (a) The circle C has equation $x^{2}+y^{2}=36$.
(i) Write down the radius of C.
(ii) The radius of another circle is twice the radius of C.

The centre of this circle is $(0,0)$. Write down its equation.
(b) A circle has equation $x^{2}+y^{2}=13$.

The points $a(2,-3), b(-2,3)$ and $c(3,2)$ are on the circle.
(i) Verify that $[a b]$ is a diameter of the circle.
(ii) Verify that $\angle a c b$ is a right angle.
(c) K is a circle with centre $(-2,1)$. It passes through the point $(-3,4)$.
(i) Find the equation of K.
(ii) The point $(t, 2 t)$ is on the circle K.

Find the two possible values of t.

Solution

3 (a) (i)
$x^{2}+y^{2}=36 \Rightarrow r=\sqrt{36}=6$

3 (a) (ii)

Circle C with centre (0,0), radius r.

$$
x^{2}+y^{2}=r^{2}
$$

1
New circle: centre (0,0), $r=12$
$x^{2}+y^{2}=12^{2} \Rightarrow x^{2}+y^{2}=144$
3 (b) (i)

To Show a line segment is a diameter of a circle:

The midpoint of a diameter is the centre of a circle.
The centre of the circle $x^{2}+y^{2}=13$ is $(0,0)$.
The formula for the midpoint, c, of the line segment [ab] is:

Midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \ldots \ldots .2 a\left(x_{1}, y_{1}\right) \quad c(x, y)$
Remember the midpoint formula as: Midpoint $=\left(\frac{\text { Add the } x \text { 's }}{2}, \frac{\text { Add the } y \text { 's }}{2}\right)$

$a(2$,	$-3)$	$b(-2$,	$3)$
\downarrow	\downarrow	\downarrow	\downarrow
x_{1}	y_{1}	x_{2}	y_{2}

Midpoint of $[a b]=\left(\frac{2-2}{2}, \frac{-3+3}{2}\right)=\left(\frac{0}{2}, \frac{0}{2}\right)=(0,0)$
The midpoint of $[a b]$ is the centre of the circle. Therefore, [$a b$] is a diameter of the circle.

3 (b) (ii)
The angle in a semi-circle at c is a right-angle $\left(90^{\circ}\right)$. To prove this you need to show that $a c$ is perpendicular to $b c$.

Slope of $a c \times$ Slope of $b c=-1 \Rightarrow a c \perp b c$
This means that $[a b]$ is a diameter of a circle.

You can do this 3 ways:

1. Find the slope of $a c$ and $b c$ and show they are perpendicular.
2. Find the lengths of the 3 sides and apply Pythagoras' theorem.
3. Show c is on the circle. Any angle standing on the diameter is a right angle. This is my favourite and by far the quickest.
$c(3,2) \in x^{2}+y^{2}=13$?
$(3)^{2}+(2)^{2}=9+4$
$=13 \Rightarrow x^{2}+y^{2}=13$
$\therefore \angle a c b$ is a right-angle.

3 (c) (i)

To form the equation of K you need its centre (given) and its radius (you can find the radius by working out the distance between the centre and the point on the circle).

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \ldots \ldots
$$

The distance between a and b is written as $|a b|$.
REMEMBER THE DISTANCE FORMULA AS:

$$
d=\sqrt{\left(\text { Difference in } x^{\prime} \mathrm{s}\right)^{2}+\left(\text { Difference in } y^{\prime} \mathrm{s}\right)^{2}}
$$

$(-2,1)$ $(-3,4)$ \downarrow \downarrow \downarrow $x_{1} y_{1}$ $x_{2} y_{2}$	$r=\sqrt{(-3-(-2))^{2}+(4-1)^{2}}$ $\Rightarrow r=\sqrt{(-3+2)^{2}+(4-1)^{2}}$ $\therefore r=\sqrt{(-1)^{2}+(3)^{2}}=\sqrt{1+9}$

Circle C with centre (h, k), radius r.

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=r^{2} \tag{2}
\end{equation*}
$$

To get the centre: Change the sign of the number inside each bracket. To get the radius: Take the square root of the number on the right.

Centre ($-2,1$), $r=\sqrt{10}$
$K:(x+2)^{2}+(y-1)^{2}=(\sqrt{10})^{2}$
$\therefore(x+2)^{2}+(y-1)^{2}=10$

3 (c) (ii)

It the point $(t, 2 t)$ lies on K, then you can substitute into K.
$(t, 2 t) \in(x+2)^{2}+(y-1)^{2}=10$
$\Rightarrow(t+2)^{2}+(2 t-1)^{2}=10$
$\Rightarrow t^{2}+4 t+4+4 t^{2}-4 t+1=10$
$\Rightarrow 5 t^{2}-5=0 \Rightarrow 5 t^{2}=5$
$\Rightarrow t^{2}=1$
$\therefore t=\sqrt{1}= \pm 1$

