THE CIRCLE (Q 3, PAPER 2)

1997

3 (a)	The equation of a circle is $x^2 + y^2 = 49$. Write down		
	(i) its radius length		
	(ii) the coordinates of the points where it intersects the <i>x</i> -axis.		
(b) Prove that the		the line $x - 2y + 10 = 0$ is a tangent to the circle whose equation is	
	$x^2 + y^2 = 20$	20.	
(c) <i>C</i> is the circle with centre (-1, 2) and radius 5.Write down the equation of <i>C</i>.			
The circle <i>I</i>		K has equation $(x-8)^2 + (y-14)^2 = 100$.	
		the point $p(2, 6)$ is on C and on K.	
Show that <i>p</i> lies on the line which joins the centres of the two circles. SOLUTION			
3 (a) (i)		Circle C with centre $(0, 0)$, radius r.	
$x^2 + y^2 = 49$		$x^2 + y^2 = r^2$ 1	
$\Rightarrow r = \sqrt{49} = 7$			
3 (a) (ii)	To FIND OUT WHERE THE CIRCLE, <i>C</i> , CROSSES THE <i>x</i> -AXIS: Set $y = 0$ in the circle equation. To FIND OUT WHERE THE CIRCLE, <i>C</i> , CROSSES THE <i>y</i> -AXIS: Set $x = 0$ in the circle equation.	
$y = 0 \equiv$	$\Rightarrow x^2 + (0)^2 =$	- 49	
$\Rightarrow x^2 = 49$			
$\therefore x = \sqrt{49} = \pm 7$			
\therefore (-7, 0), (7, 0) are the x-intercepts.			

3 (b) FINDING THE POINT OF CONTACT BETWEEN A TANGENT AND A CIRCLE: STEPS 1. Isolate *x* or *y* using equation of the line. 2. Substitute into the equation of the circle and solve the resulting quadratic. PROOF THAT A LINE IS A TANGENT TO A CIRCLE: When you solve the quadratic only one answer is obtained, i.e. one point of contact. 1. $x-2y+10=0 \Rightarrow x=2y-10$ 2. $x^2 + y^2 = 20$ $\Rightarrow (2y-10)^2 + y^2 = 20$ $\Rightarrow 4y^2 - 40y + 100 + y^2 = 20$ $\Rightarrow 5y^2 - 40y + 80 = 0$ $\Rightarrow y^2 - 8y + 16 = 0$ $\Rightarrow (y-4)(y-4) = 0$

As the quadratic has only one solution, the line is a tangent to the circle.

3 (c)

 $\therefore y = 4$

Equation of C: centre (h, k) = (-1, 2), r = 5

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

$$\Rightarrow (x-(-1))^{2} + (y-2)^{2} = (5)^{2}$$

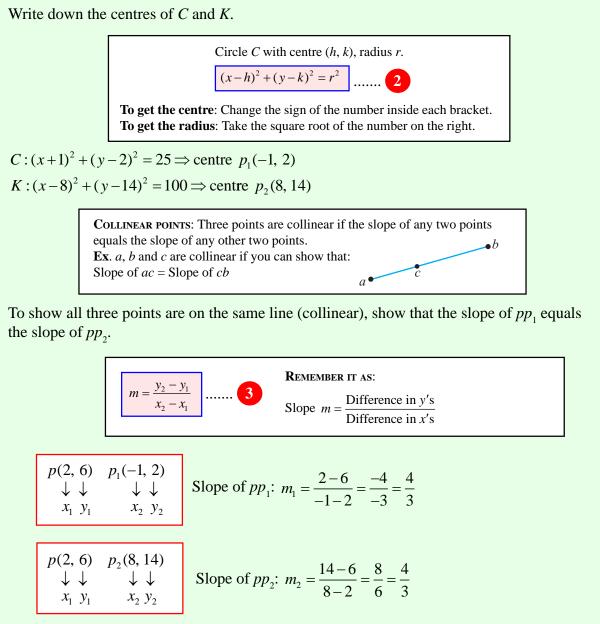
$$\therefore (x+1)^{2} + (y-2)^{2} = 25$$

IS A POINT ON A CIRCLE, INSIDE A CIRCLE OR OUTSIDE A CIRCLE? Substitute the point into the circle. On the circle: Both sides are equal. Inside the circle: The left hand side is less than the right hand side. Outside the circle: The left hand side is greater than the right hand side.

$$C: (x+1)^{2} + (y-2)^{2} = 25$$

$$p(2, 6) \in C?$$

$$(2+1)^{2} + (6-2)^{2} = (3)^{2} + (4)^{2}$$


$$= 9 + 16 = 25 \implies p(2, 6) \in C$$

$$K : (x-8)^{2} + (y-14)^{2} = 100$$

$$p(2, 6) \in K ?$$

$$(2-8)^{2} + (6-14)^{2} = (-6)^{2} + (8)^{2}$$

$$= 36 + 64 = 100 \implies p(2, 6) \in K$$

Therefore, *p* lies on the line which joins the centres of the two circles.