Area \& Volume (Q 1, Paper 2)

2004

1 (a) Calculate the area of the figure in the diagram.

(b) The sketch shows a piece of land.

At equal intervals of 12 m along [$a b$], perpendicular measurements are made to the boundary, as shown on the sketch.
Use Simpson's Rule to estimate the area of the piece of land.
(c) A buoy at sea is in the shape of a hemisphere with a cone on top, as in the diagram. The radius of the base of the cone is 0.9 m and its vertical height is 1.2 m .
(i) Find the vertical height of the buoy.
(ii) Find the volume of the buoy, in terms of π.
(iii) When the buoy floats, 0.8 m of its height is above water. Find, in terms of π, the volume of that part of the buoy that is above the water.

Solution

1 (a)

2. SQuare

l: Length

$$
\begin{align*}
& A=l \times l=l^{2} \tag{2}\\
& P=4 l
\end{align*}
$$

Area of a right-angled triangle
You can find the area, A, by multiplying half the base, b, by the perpendicular height, h.

$$
\begin{array}{|l|l}
& A=\frac{1}{2} b h \\
\hline
\end{array}
$$

Area of figure $=$ Area of square + Area of right-angled triangle
Area of square: $A_{1}=l \times l=4 \times 4=16 \mathrm{~m}^{2}$
Area of right-angled triangle: $A_{2}=\frac{1}{2} b h=\frac{1}{2}(4)(4)=8 \mathrm{~m}^{2}$
Total Area: $A=A_{1}+A_{2}=16+8=24 \mathrm{~m}^{2}$
1 (b)

$$
A \approx \frac{h}{3}[(\text { First }+ \text { Last })+4(\text { Evens })+2(\text { Remaining Odds })]
$$

$A \approx \frac{12}{3}[(0+35.5)+4(22+31+22.6)+2(15.5+25.9)]$
$\Rightarrow A \approx 4[(35.5)+4(75.6)+2(41.4)]$
$\Rightarrow A \approx 4[35.5+302.4+82.8]$
$\Rightarrow A \approx 4[420.7]=1682.8 \mathrm{~cm}^{2}$

1 (c) (i)

$V=\frac{1}{3} \pi r^{2} h$

Curved SA: $A=\pi r l$
17
Total SA: $A=\pi r l+\pi r^{2}$
You can use Pythagoras on the cone: $l^{2}=r^{2}+h^{2}$

Hemisphere

$$
V=\frac{2}{3} \pi r^{3}
$$

Curved SA: $A=2 \pi r^{2}$
16
Total SA: $A=3 \pi r^{2}$

As can be seen from the diagram, the vertical height of the buoy is $1.2 \mathrm{~m}+0.9 \mathrm{~m}=2.1 \mathrm{~m}$

1 (c) (ii)

Volume of buoy = Volume of cone + Volume of hemisphere
Cone: $r=0.9 \mathrm{~m}, h=1.2 \mathrm{~m}$
$V_{1}=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(0.9)^{2}(1.2)=0.324 \pi \mathrm{~cm}^{3}$

Hemisphere: $r=0.9 \mathrm{~m}$
$V_{2}=\frac{2}{3} \pi r^{3}=\frac{2}{3} \pi(0.9)^{3}=0.486 \pi \mathrm{~cm}^{3}$

Buoy: $V=V_{1}+V_{2}=0.324 \pi+0.486 \pi=0.81 \pi \mathrm{~cm}^{3}$

1 (c) (iii)

A cone of height 0.8 m is above the water. What is its radius?
Compare the two similar triangles as shown. The ratio of their corresponding sides are equal.
$\therefore \frac{r_{1}}{h_{1}}=\frac{r_{2}}{h_{2}} \Rightarrow \frac{r_{1}}{0.8}=\frac{0.9}{1.2}$
$\Rightarrow r_{1}=\frac{0.8 \times 0.9}{1.2}=0.6 \mathrm{~m}$
Volume of small cone:
$V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(0.6)^{2}(0.8)$
$\therefore V=0.096 \pi \mathrm{~m}^{3}$

