Area \& Volume (Q 1, Paper 2)

1999

1 (a) The area of a square is $36 \mathrm{~cm}^{2}$.
Find the length of a side of the square.
(b) A sketch of a piece of land $a b c d$ is shown.

At equal intervals of 15 m along [$b c$], perpendicular measurements of $40 \mathrm{~m}, 60 \mathrm{~m}$, $50 \mathrm{~m}, 70 \mathrm{~m}, 60 \mathrm{~m}, 30 \mathrm{~m}$ and 20 m are made to the top boundary.

Use Simpson's Rule to estimate the area of the piece of land. [See Tables, page 42].
(c) (i) Write down, in terms of π and r, the volume of a hemisphere with radius of length r.
(ii) A fuel storage tank is in the shape of a cylinder with a hemisphere at each end, as shown.

The capacity (internal volume) of the tank is $81 \pi \mathrm{~m}^{3}$.

The ratio of the capacity of the cylindrical section to the sum of the capacities of the hemispherical ends 5:4.

Calculate the internal radius length of the tank.

Solution

1 (a)
2. Square

l: Length

$$
\begin{align*}
& A=l \times l=l^{2} \tag{2}\\
& P=4 l
\end{align*}
$$

$A=l^{2} \Rightarrow 36=l^{2}$
$\therefore l=\sqrt{36}=6 \mathrm{~cm}$
1 (b)

$A \approx \frac{h}{3}[($ First + Last $)+4($ Evens $)+2($ Remaining Odds $)]$
11
$h=15 \mathrm{~cm}$
$A \approx \frac{15}{3}[(40+20)+4(60+70+30)+2(50+60)]$
$\Rightarrow A \approx 5[(60)+4(160)+2(110)]$
$\Rightarrow A \approx 5[60+640+220]$
$\therefore A \approx 5[920]=4600 \mathrm{~cm}^{2}$

1 (c) (i)

Hemisphere

$V=\frac{2}{3} \pi r^{3}$
Curved SA: $A=2 \pi r^{2}$
Total SA: $A=3 \pi r^{2}$

16
Total SA: $A=3 \pi r^{2}$
$V=\frac{2}{3} \pi r^{3}$

1 (c) (ii)

The tank is made up of 2 hemispheres (i.e. one sphere) and a cylinder. The radius of the cylinder and the sphere is the same.

Volume of tank $=81 \pi \mathrm{~m}^{3}$
Ratio of the volume of the cylinder to the sphere is 5:4.
$5+4=9$.
Therefore, the volume of the sphere is $\frac{4}{9}$ of the overall volume.
Volume of the sphere $=\frac{4}{9} \times 81 \pi=36 \pi \mathrm{~m}^{3}$

Sphere:
$V=\frac{4}{3} \pi r^{3} \Rightarrow 36 \pi=\frac{4}{3} \pi r^{3}$
$\Rightarrow \frac{36 \times 3}{4}=r^{3}$
$\Rightarrow r^{3}=27$
$\therefore r=\sqrt[3]{27}=3 \mathrm{~cm}$

