## Area \& Volume (Q 1, Paper 2)

2002
1 (a) Each side of an equilateral triangle measures 4 units. Calculate the area of the triangle, giving your answer in surd form.

Note: Area of a triangle $=\frac{1}{2} a b \sin C$.

(b) The diagram shows the curve $y=x^{2}+1$ in the domain $0 \leq x \leq 4$.

(i) Copy the following table. Then, complete it using the equation of the curve:

| $x$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ |  |  |  |  |  |

(ii) Hence, use Simpson's Rule to estimate the area between the curve and the $x$-axis.
(c) A solid is in the shape of a hemisphere surmounted by a cone, as in the diagram.
(i) The volume of the hemisphere is $18 \pi \mathrm{~cm}^{3}$.

Find the radius of the hemisphere.
(ii) The slant height of the cone is $3 \sqrt{5} \mathrm{~cm}$.

Show that the vertical height of the cone is 6 cm .
(iii) Show that the volume of the cone equals the volume of the hemisphere.
(iv) This solid is melted down and recast in the shape of a solid cylinder.
The height of the cylinder is 9 cm . Calculate its radius.


## Answers

1 (a) $4 \sqrt{3}$ units $^{2}$
(b) (i)

| $x$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 1 | 2 | 5 | 10 | 17 |

(ii) $\frac{76}{3}$ units $^{2}$
(c) (i) 3 cm
(iv) 2 cm

