ALGEBRA (Q 2 & 3, PAPER 1)

Lesson No. 9: Functions

2006

- 2 (b) Let $f(x) = 2x^3 + ax^2 + bx + 14$.
 - (i) Express f(2) in terms of a and b.
 - (ii) If f(2) = 0 and f(-1) = 0, find the value of a and the value of b.

SOLUTION

2 (b) (i)

$$f(x) = 2x^{3} + ax^{2} + bx + 14$$

$$\Rightarrow f(2) = 2(2)^{3} + a(2)^{2} + b(2) + 14 = 16 + 4a + 2b + 14$$

$$\therefore f(2) = 4a + 2b + 30$$

2 (b) (ii)

$$f(2) = 0 \Rightarrow 4a + 2b + 30 = 0 \Rightarrow 2a + b = -15....(1)$$

$$f(-1) = 0 \Rightarrow 2(-1)^3 + a(-1)^2 + b(-1) + 14 = 0$$

 $\Rightarrow -2 + a - b + 14 = 0 \Rightarrow a - b = -12...(2)$

Solve equations (1) and (2) simultaneously. 2a+b=-15...(1)

$$\frac{a-b=-12....(2)}{3a = -27} \Rightarrow a = -9$$

Substitute this value of a into equation (2): $(-9) - b = -12 \Rightarrow b = 3$

- 3 (c) p is a positive number and f is the function $f(x) = (2x + p)(x p), x \in \mathbf{R}$.
 - (i) Given that f(2) = 0, find the value of p.
 - (ii) Hence, find the range of values of x for which f(x) < 0.

SOLUTION

3 (c) (i)

$$f(x) = (2x + p)(x - p) \Rightarrow f(2) = (4 + p)(2 - p) = 0$$

Set each bracket equal to zero and solve for p.

:.
$$p = -4, 2$$

As p > 0, ignore the negative solution.

$$\therefore p = 2$$

3 (c) (ii)

$$\therefore f(x) = (2x+2)(x-2) = 2x^2 - 2x - 4 < 0$$

Solving quadratic inequalities:

STEPS

- 1. Find the roots of the quadratic equation: $ax^2 + bx + c = 0$. These are the places where the curve crosses the x-axis.
- **2**. Sketch the graph. It is either \cup shaped or \cap shaped.
- 3. Use the graph to solve the inequality. y = f(x) > 0 is above the *x*-axis. y = f(x) < 0 is below the *x*-axis.

- 2. Sketch the graph. The coefficient of x^2 is positive so the graph is \cup shaped.
- 3. You can see the parts of the graph that are less than zero, i.e. below the *x*-axis.

- 3 (c) Let $f(x) = x^2 + ax + t$ where $a, t \in \mathbf{R}$.
 - (i) Find the value of a, given that f(-5) = f(-1).
 - (ii) Given that there is only one value of x for which the f(x) = 0, find the value of t.

SOLUTION

3 (c)
$$f(x) = x^2 + ax + t$$

3 (c) (i)

$$f(-5) = f(-1) \Rightarrow (-5)^2 + a(-5) + t = (-1)^2 + a(-1) + t$$

$$\Rightarrow$$
 25 – 5 a + t = 1 – a + t

$$\Rightarrow$$
 25 – 1 = – a + 5 a

$$\Rightarrow$$
 24 = 4 $a \Rightarrow a = 6$

3 (c) (ii)

$$f(x) = 0 \Rightarrow x^2 + 6x + t = 0$$

There is only one value of x for which the f(x) = 0 means that the quadratic equations has equal roots.

The quadratic equation $ax^2 + bx + c = 0$ has equal roots if $b^2 = 4ac$.

$$\begin{vmatrix} a=1 \\ b=6 \\ c=t \end{vmatrix} b^2 = 4ac \Rightarrow 6^2 = 4(1)(t) \Rightarrow 36 = 4t$$

$$\therefore t = 9$$

- 3 (c) Let $f(x) = x^3 + ax^2 + bx 6$ where a and b are real numbers. Given that x-1 and x-2 are factors of f(x)
 - (i) find the value of a and the value of b
 - (ii) hence, find the values of x for which f(x) = 0.

SOLUTION

3 (c)

The factor theorem states that:

If (x-k) is a factor of f(x) then k is a root of f(x) = 0, i.e. f(k) = 0 and vice versa.

3 (c) (i)

If x-1 is a factor of f(x), then f(1) = 0.

$$\therefore f(1) = (1)^3 + a(1)^2 + b(1) - 6 = 0$$

$$\Rightarrow$$
 1+ a + b - 6 = 0 \Rightarrow a + b = 5.....(1)

If x-2 is a factor of f(x), then f(2) = 0.

$$f(2) = (2)^3 + a(2)^2 + b(2) - 6 = 0$$

$$\Rightarrow$$
 1+ a+b-6=0 \Rightarrow a+b=5.....(1)

$$\Rightarrow$$
 8 + 4a + 2b - 6 = 0 \Rightarrow 4a + 2b = -2

$$\Rightarrow 2a+b=-1....(2)$$

Solve equations (1) and (2) simultaneously.

$$\begin{array}{c}
a+b=5.....(1) \\
2a+b=-1....(2)(\times -1)
\end{array}
\longrightarrow
\begin{array}{c}
a+b=5 \\
-2a-b=1 \\
-a=6 \Rightarrow a=-6
\end{array}$$

Substitute this value of a into Eqn. (1) \Rightarrow -6+b=5 \Rightarrow b=11

ANSWER:
$$a = -6, b = 11$$

3 (c) (ii)

$$f(x) = 0 \Rightarrow x^3 - 6x^2 + 11x - 6 = 0$$

The 2 linear factors multiply to give a quadratic.

$$(x-1)(x-2) = x^2 - 3x + 2$$

Divide this quadratic into the cubic to get the other linear factor.

$$\therefore x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3) = 0$$

Set each factor equal to zero and solve for x.

$$\therefore x = 1, 2, 3$$

$$\begin{array}{r}
x-3 \\
x^2 - 3x + 2 \overline{\smash)x^3 - 6x^2 + 11x - 6} \\
\underline{+x^3 \pm 3x^2 \mp 2x} \\
-3x^2 + 9x - 6 \\
\underline{\pm 3x^2 \mp 9x \pm 6} \\
0
\end{array}$$

- 3 (c) (i) $f(x) = ax^2 + bx 8$, where a and b are real numbers. If f(1) = -9 and f(-1) = 3, find the value of a and the value of b.
 - (ii) Using your values of a and b from (i), find the two values of x for which $ax^2 + bx = bx^2 + ax$.

SOLUTION

3 (c) (i)

$$f(x) = ax^2 + bx - 8$$

$$f(1) = -9 \Rightarrow a(1)^2 + b(1) - 8 = -9 \Rightarrow a + b = -1....(1)$$

$$f(-1) = 3 \Rightarrow a(-1)^2 + b(-1) - 8 = 3 \Rightarrow a - b = 11....(2)$$

Solve equations (1) and (2) simultaneously.

$$a+b=-1...(1)$$

 $a-b=11....(2)$
 $a-b=10 \Rightarrow a=5$

Substitute the value for a back into Eqn. (1) $\Rightarrow 5+b=-1 \Rightarrow b=-6$

3 (c) (ii)

$$ax^2 + bx = bx^2 + ax \Rightarrow 5x^2 - 6x = -6x^2 + 5x$$
 [Bring all terms to the left.]

$$\Rightarrow 11x^2 - 11x = 0$$
 [Factorise the quadratic.]

$$\Rightarrow 11x(x-1) = 0$$
 [Set each factor equal to zero and solve for x.]

$$\therefore x = 0, 1$$

3 (c) Let
$$f(x) = (2+x)(3-x), x \in \mathbf{R}$$
.

Write down the solutions (roots) of f(x) = 0.

Let
$$g(x) = 3x - k$$
.

The equation f(x) + g(x) = 0 has equal roots. Find the value of k.

SOLUTION

$$f(x) = (2+x)(3-x)$$
.

$$f(x) = 0 \Rightarrow (2+x)(3-x) = 0$$
 [Set each factor equal to zero and solve for x.]
 $\therefore x = -2, 3$

$$g(x) = 3x - k$$
.

$$f(x) + g(x) = 0 \Rightarrow (2+x)(3-x) + 3x - k = 0$$

$$\Rightarrow$$
 6 + $x - x^2 + 3x - k = 0$

$$\Rightarrow -x^2 + 4x + (6-k) = 0$$

$$\Rightarrow x^2 - 4x - (6 - k) = 0$$

EQUAL ROOTS

The quadratic equation $ax^2 + bx + c = 0$ has equal roots if $b^2 = 4ac$.

$$b^2 = 4ac \Rightarrow (-4)^2 = 4(1)(k-6)$$

$$\Rightarrow$$
 16 = 4 k - 24

$$\Rightarrow 40 = 4k \Rightarrow k = 10$$

$$a = 1$$

$$b = -4$$

$$c = k - 6$$

3 (c) Let
$$f(x) = (1-x)(2+x), x \in \mathbf{R}$$
.

Write down the solutions of f(x) = 0.

Find the range of values of x for which f(x) > 0.

Let
$$g(x) = f(x) - f(x+1)$$
.

Express g(x) in the form ax + b, $a, b \in \mathbf{R}$.

Find the solution set of g(x) < 0.

SOLUTION

$$f(x) = (1-x)(2+x)$$

$$f(x) = 0 \Rightarrow (1-x)(2+x) = 0$$
 [Set each factor equal to zero and solve for x.]

$$\therefore x = -2, 1$$

To solve quadratic inequalities, you need to sketch the graph of the quadratic function.

STEPS

- 1. Find the roots of the quadratic equation: $ax^2 + bx + c = 0$. These are the places where the curve crosses the x-axis.
- **2**. Sketch the graph. It is either \cup shaped or \cap shaped.
- **3**. Use the graph to solve the inequality.

$$y = f(x) > 0$$
 is above the x-axis.

$$y = f(x) < 0$$
 is below the x-axis.

$$f(x) > 0 \Rightarrow (1-x)(2+x) > 0$$
 [Multiply out the brackets.]
 $\Rightarrow 2+x-x^2 > 0$

The part of the graph above the *x*-axis satisfies the inequality.

$$\therefore -2 < x < 1$$

$$g(x) = f(x) - f(x+1)$$

$$= 2 - x - x^{2} - [2 - (x+1) - (x+1)^{2}]$$

$$= 2 - x - x^{2} - [2 - (x+1) - (x^{2} + 2x + 1)]$$

$$= 2 - x - x^{2} - [2 - x - 1 - x^{2} - 2x - 1]$$

$$= 2 - x - x^{2} - [-3x - x^{2}]$$

$$= 2 - x - x^{2} + 3x + x^{2}$$

$$= 2x + 2$$

$$g(x) < 0 \Rightarrow 2x + 2 < 0$$

 $\Rightarrow x + 1 < 0$
 $\Rightarrow x < -1$

